Post Reply 
Summation proof
09-13-2023, 01:44 PM
Post: #6
RE: Summation proof
To clarify my (rather rusty) recollection, the LHS reads "the derivative of COMB(n, k) where x = 0"? Also, can you explain the connection to Bernoulli numbers?

Empirically, here is a table of your function for n from 0 to 7 and k from 0 to n.

Code:

 { Inf }
 { '3/2'   1 }
 { '5/6'   1 '3/2' }
 { '7/12'  1 '5/2'  '11/6' }
 { '9/20'  1 '7/2'  '13/3'  '25/12' }
 { '11/30' 1 '9/2'  '47/6'  '77/12'  '137/60' }
 { '13/42' 1 '11/2' '37/3'  '57/4'   '87/10'  '49/20' }
 { '15/56' 1 '13/2' '107/6' '319/12' '459/20' '223/20' '363/140' }

The first three columns are very simple; subsequent columns do not seem obvious to me. Also, neither the numerators nor denominators are in the OEIS. Is there a combinatorial meaning to these numbers?
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Summation proof - Albert Chan - 09-13-2023, 02:11 AM
RE: Summation proof - rprosperi - 09-13-2023, 02:37 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:20 AM
RE: Summation proof - Albert Chan - 09-13-2023, 02:54 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:52 AM
RE: Summation proof - John Keith - 09-13-2023 01:44 PM
RE: Summation proof - Albert Chan - 09-13-2023, 07:12 PM
RE: Summation proof - rprosperi - 09-13-2023, 06:49 PM
RE: Summation proof - John Keith - 09-13-2023, 08:15 PM
RE: Summation proof - Maximilian Hohmann - 09-13-2023, 08:35 PM
RE: Summation proof - Albert Chan - 09-13-2023, 11:18 PM
RE: Summation proof - rprosperi - 09-14-2023, 11:53 AM



User(s) browsing this thread: 2 Guest(s)