Summation proof
|
09-13-2023, 11:18 PM
Post: #11
|
|||
|
|||
RE: Summation proof
Here is HP71B code, that the coefficients are used.
It did work, but code really not suitable with approximate numbers. 10 DESTROY ALL @ OPTION BASE 0 @ INPUT "M= ";M 20 DIM C(M),D(M) @ N=M DIV 2 @ S=(-1)^(M-N-N) @ D(N)=0 30 FOR J=1 TO N @ D(N+J)=J^M @ D(N-J)=S*D(N+J) @ NEXT J 40 IF S<0 THEN D(M)=(N+1)^M 50 FOR I=0 TO M-1 @ FOR J=M TO I+1 STEP -1 @ D(J)=D(J)-D(J-1) @ NEXT J @ NEXT I 100 K=1 @ S=0 @ N1=N+1 @ C(N)=1/N1 110 FOR J=N TO 1 STEP -1 @ K=K*J/(N1-J) @ S=S+1/J @ C(N-J)=K*S @ NEXT J 120 FOR J=N1 TO M @ C(J)=C(J-1)*(N1-J-1)/(J+1) @ NEXT J 130 DISP "B=";DOT(C,D) >run M= 6 B= 2.38095210526E-2 >1/res 42.0000048632 The simple and accurate solution is with zeta correction. >5 DEF FNB(M)=(-1)^(M/2+1)*(IP(2*FACT(M)/(PI^M)*(1+3^(-M)))+.5)/(2^M-1) >for m = 2 to 30 step 2 @ m, fnb(m) @ next m 2 .166666666667 4 -3.33333333333E-2 6 2.38095238095E-2 8 -3.33333333333E-2 10 7.57575757576E-2 12 -.253113553114 14 1.16666666667 16 -7.09215686275 18 54.9711779449 20 -529.124242424 22 6192.12318841 24 -86580.2531135 26 1425517.16667 28 -27298231.0678 30 601580873.9 >fnb(100) -2.83822495705E78 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Summation proof - Albert Chan - 09-13-2023, 02:11 AM
RE: Summation proof - rprosperi - 09-13-2023, 02:37 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:20 AM
RE: Summation proof - Albert Chan - 09-13-2023, 02:54 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:52 AM
RE: Summation proof - John Keith - 09-13-2023, 01:44 PM
RE: Summation proof - Albert Chan - 09-13-2023, 07:12 PM
RE: Summation proof - rprosperi - 09-13-2023, 06:49 PM
RE: Summation proof - John Keith - 09-13-2023, 08:15 PM
RE: Summation proof - Maximilian Hohmann - 09-13-2023, 08:35 PM
RE: Summation proof - Albert Chan - 09-13-2023 11:18 PM
RE: Summation proof - rprosperi - 09-14-2023, 11:53 AM
|
User(s) browsing this thread: 2 Guest(s)