Post Reply 
(HP71B) Newton's method
10-02-2023, 04:04 PM (This post was last modified: 10-03-2023 12:29 AM by Albert Chan.)
Post: #4
RE: (HP71B) Newton's method
(10-01-2023 09:47 PM)Albert Chan Wrote:  W(b=1) example, newton iteration formula:  x = (x + 1) / (1 + e^x/b)

Because of e^x term in denominator, this setup is not good for W(huge b)
Convegence is slow and inaccurate, even with good guess.

>2 B=1E10 @ DEF FNF(X)=B*EXP(-X)-X ! root = W(B)
>RUN
Guess, Accuracy = LN(B), RES*1E-6
 23.0258509299
 12.0135445721
 13.0133779957
 14.0128061672
 15.0110431755
 16.005828047
 16.9907276945
 17.9478731089
 18.8306249224
 19.5363990109
 19.9283981583
 20.0242147693
 20.0286862103
 20.0286854427
FNF calls = 28

>X*EXP(X) ! expected to be close to B
 10000000308.6



It is better is to setup Newton formula with less curvy f (e^-x is as bad as e^x)

x * e^x = b
ln(x) + x = ln(b)
x = f(x)      → f = ln(b) - ln(x)      → f' = -1/x

Newton: x = (x - f/f') / (1 - 1/f') = (1 + ln(b/x)) / (1 + 1/x)

>2 B=1E10 @ DEF FNF(X)=LN(X/B)+X ! root = W(B)
>RUN
Guess, Accuracy = LN(B), RES*1E-6
 23.0258509299
 20.0197856819
 20.0286854133
 20.0286854133
FNF calls = 8

>X*EXP(X) ! very close to B. no other 12-digits X can get closer!
 9999999999.95
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(HP71B) Newton's method - Albert Chan - 10-01-2023, 03:59 PM
RE: (HP71B) Newton's method - Albert Chan - 10-01-2023, 04:34 PM
RE: (HP71B) Newton's method - Albert Chan - 10-01-2023, 09:47 PM
RE: (HP71B) Newton's method - Albert Chan - 10-02-2023 04:04 PM
RE: (HP71B) Newton's method - Albert Chan - 11-12-2024, 12:12 PM
RE: (HP71B) Newton's method - Albert Chan - 11-13-2024, 01:12 PM
RE: (HP71B) Newton's method - Albert Chan - 11-13-2024, 08:38 PM
RE: (HP71B) Newton's method - Albert Chan - 11-18-2024, 01:22 PM
RE: (HP71B) Newton's method - Albert Chan - 11-21-2024, 12:08 AM



User(s) browsing this thread: 2 Guest(s)