(42s) Hypergeometric function for HP-42s (UPDATED)
|
10-30-2023, 05:29 PM
(This post was last modified: 11-02-2023 11:04 AM by Namir.)
Post: #1
|
|||
|
|||
(42s) Hypergeometric function for HP-42s (UPDATED)
Hypergeometric function for HP-42s
================================= Code calculates values for the hypergeometric function F(alpha, beta, gamma, x). The code uses the gamma function to help calculate the value of the hypergeometric function. Memory Map ========= Code: R00 = x HP-42S Listing ========= NOTE: The following code was updated per suggestions of Velentin Alibillo to shorten the code by a few statements. Code: 01 LBL "HGFX" Usage ===== 1) Press [XEQ] HGFX. The program displays the prompt "A^B^C^X?" 2) Enter the value for parameter alpha and press ENTER. 3) Enter the value for parameter beta and press ENTER. 4) Enter the value for parameter gamma and press ENTER. 5) Enter the value for x and press R/S. The program displays the prompt "TOLER?" 6) Enter a small value for the tolerance and press R/S. 7) The program displays the value of the hypergeometric function. Example ======= To calculate F(1.5, 1.5, 2.5, 0.3), perform the following steps: 1) Press [XEQ] HGFX. The program displays the prompt "A^B^C^X?" 2) Enter the value 1.5 for parameter alpha and press ENTER. 3) Enter the value 1.5 for parameter beta and press ENTER. 4) Enter the value 2.5 for parameter gamma and press ENTER. 5) Enter the value 0.3 for x and press R/S. The program displays the prompt "TOLER?" 6) Enter a small value 1E-15 for the tolerance and press R/S. 7) The program displays 1.36956073 as the value of the hypergeometric function. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(42s) Hypergeometric function for HP-42s (UPDATED) - Namir - 10-30-2023 05:29 PM
RE: Hypergeometric function for HP-42s - Valentin Albillo - 11-01-2023, 02:35 AM
RE: Hypergeometric function for HP-42s - Werner - 11-01-2023, 06:13 PM
RE: (42s) Hypergeometric function https://www.hpmuseum.org/forum/index.phpfor HP-42s - Namir - 11-02-2023, 02:45 AM
RE: (42s) Hypergeometric function for HP-42s (UPDATED) - Namir - 11-02-2023, 11:05 AM
|
User(s) browsing this thread: 2 Guest(s)