Volume of a bead with square hole- Program approach?
|
11-08-2023, 04:58 PM
(This post was last modified: 11-08-2023 10:29 PM by Albert Chan.)
Post: #33
|
|||
|
|||
RE: Volume of a bead with square hole- Program approach?
Hi, DM48
Nice to know there is another way to get volume: sphere - hole = (x-strip - hole) + (2 spherical caps) Since we have direct formula for spherical cap, 2nd integral can be skipped 2 caps = 2 * pi/3*h^2*(3r-h) = pi/12*(2h)^2*(3d-2h) = pi/12*(d-a)^2*(2d+a) 10 DEF FNH(X) @ N=N+1 @ FNH=SQRT(H-X*X) @ END DEF 20 DEF FNZ(Y) @ H=D*D-Y*Y @ FNZ=INTEGRAL(0,FNH(B),P,FNH(IVAR)-B) @ END DEF 30 INPUT "D,A,B = ";D,A,B @ N=0 @ P=1E-5 40 I1=INTEGRAL(0,A,P,FNZ(IVAR)) @ I2=PI/12*(D-A)^2*(2*D+A) 50 DISP I1;"+";I2;"=";I1+I2,N @ GOTO 30 >run D,A,B = 12,2,2 176.547653773 + 680.678408277 = 857.22606205 960 D,A,B = 12,2,10 17.2338339713 + 680.678408277 = 697.912242248 992 D,A,B = 12,10,2 662.307552043 + 35.6047167408 = 697.912268784 1888 Numerically, thinner, less curvy strip (A ≤ B) converge better. For comparison, below patch directly get (-hole) + sphere >20 DEF FNX(Y) @ H=D*D-Y*Y @ FNX=INTEGRAL(0,B,P,FNH(IVAR)) @ END DEF >40 I1=-INTEGRAL(0,A,P,FNX(IVAR)) @ I2=PI/6*D*D*D >run D,A,B = 12,2,2 -47.552634005 + 904.778684234 = 857.226050229 225 D,A,B = 12,2,10 -206.866458199 + 904.778684234 = 697.912226035 465 D,A,B = 12,10,2 -206.866453454 + 904.778684234 = 697.91223078 465 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)