RE: HP48-HP50G : Error functions ERF(z), FRESNEL integrals, PROBIT, etc.
|
11-14-2023, 10:24 PM
Post: #26
|
|||
|
|||
RE: RE: HP48-HP50G : Error functions ERF(x or z), ERFC (x or z) & iERF/iERFc —>x
Hi, Gil
It is just taylor series: y(x+h) ≈ y(x) + y'(x) * h function ierf_taylor(x) y = ierf(x) x = erf(y) dx = erf(y)' dy dy/dx = 1/erf(y)' = sqrt(pi)/2 * exp(y*y) approx(y) = ierfc(1-x) = erf(1-(1-x)) = erf(x-1+1) h = exact - approx = x - (x-1+1) FYI, if x is small, h is usually not zero. >x = pi/1e6 >x - (x-1+1) -3.4641E-13 Since small x correspond to small y, dy/dx is very flat ≈ sqrt(pi)/2 ierf(ε) ≈ sqrt(pi)/2 * (ε + pi/12*ε^3 + 7/480*pi^2*ε^5) function erf_taylor(x) y = erf(x) dy = erf(x)' dx dy/dx = erf(x)' = 2/sqrt(pi) * exp(-x*x) approx(y) = 1 - erfc(x), we need to get what x 'belongs' to this y h = exact - approx = x - ierf_taylor(y) When x is small, dy/dx again is very flat ≈ 2/sqrt(pi) erf(ε) ≈ 2/sqrt(pi) * (ε - ε^3/5 + ε^5/10) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 9 Guest(s)