HP49-50G plotting of sum(x=0 to 0, 1, 2,...10, of x!/(2x)!)
|
11-15-2023, 05:53 PM
Post: #11
|
|||
|
|||
RE: HP49-50G plotting of sum(x=0 to 0, 1, 2,...10, of x!/(2x)!)
(11-06-2023 12:25 AM)Thomas Klemm Wrote: For Sum[(k!)^2/(2k)!, k] the result is: I was not able to find a closed solution for the associated generating function using WolframAlpha. But after trying some values for \(x\) I could guess it: \[ \begin{align} \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} \; x^k &= \frac{1 + \frac{\frac{\sqrt{x}}{2}}{\sqrt{1 - \frac{x}{4}}} \sin^{-1}\left( \frac{\sqrt{x}}{2}\right)}{1 - \frac{x}{4}} \end{align} \] Examples \(x = 1\) \[ \begin{align} \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} &= \frac{2}{27} \left(18 + \sqrt{3} \pi \right) \\ &\approx 1.736399858718715077909795 \\ \end{align} \] \(x = 2\) \[ \begin{align} \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} \; 2^k &= \frac{4 + \pi}{2} \\ &\approx 3.570796326794896619231322 \\ \end{align} \] \(x = 3\) \[ \begin{align} \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} \; 3^k &= \frac{4}{3} \left(3 + \sqrt{3} \pi \right) \\ &\approx 11.25519745693687140237631 \\ \end{align} \] Differential Equation I wondered how to find a differential equation based on the coefficients of the sequence. Substitution The formula above suggests the following substitution: \[ \begin{align} u &= \frac{\sqrt{x}}{2} \\ u^2 &= \frac{x}{4} \\ x &= 4u^2 \end{align} \] We can also rewrite the coefficients using Double Factorials: \[ \begin{align} y(x) &= \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} \; x^k \\ \\ y(u) &= \sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!} \; 2^{2k} u^{2k} \\ \\ &= \sum_{k=0}^{\infty} \frac{((2k)!!)^2}{(2k)!} \; u^{2k} \\ \\ &= \sum_{k=0}^{\infty} \frac{(2k)!!}{(2k-1)!!} \; u^{2k} \\ \\ &= \sum_{k=0}^{\infty} a_{k} \; u^{2k} \\ \end{align} \] Example Here's an example of the transformation of the coefficient \(a_k\) for \(k = 4\): \[ \begin{align} \frac{(k!)^2}{(2k)!} \; 2^{2k} &= \frac{(1 \cdot 2 \cdot 3 \cdot 4)^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} \; 2^8 \\ \\ &= \frac{(1 \cdot 2 \cdot 3 \cdot 4)^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} \; \left( 2^4 \right)^2 \\ \\ &= \frac{(1 \cdot 2 \cdot 3 \cdot 4 \cdot \; 2^4)^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} \\ \\ &= \frac{(2 \cdot 4 \cdot 6 \cdot 8)^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} \\ \\ &= \frac{2 \cdot 4 \cdot 6 \cdot 8}{1 \cdot 3 \cdot 5 \cdot 7} \\ \\ &= \frac{8!!}{7!!} \\ \end{align} \] Difference of Coefficients Based on this definition the difference \(a_{k} - a_{k-1}\) can be calculated: \[ \begin{align} a_k &= \frac{(2k)!!}{(2k-1)!!} \\ \\ a_k - a_{k-1} &= \frac{(2k)!!}{(2k-1)!!} - \frac{(2k-2))!!}{(2k-3)!!} \\ \\ &= \frac{(2k-2)!!}{(2k-3)!!} \frac{2k}{2k-1} - \frac{(2k-2))!!}{(2k-3)!!} \\ \\ &= \frac{(2k-2)!!}{(2k-3)!!} \cdot \left( \frac{2k}{2k-1} - 1 \right) \\ \\ &= a_{k-1} \cdot \frac{1}{2k-1} \end{align} \] Example \[ \left \{ a_k \mid k = 0, 1, 2, 3, \cdots \right \} = \left \{ 1, \; \frac{2}{1}, \; \frac{2 \cdot 4}{1 \cdot 3}, \; \frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5}, \; \frac{2 \cdot 4 \cdot 6 \cdot 8}{1 \cdot 3 \cdot 5 \cdot 7}, \; \frac{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}, \; \cdots \right \} \] For \(k = 4\) we get: \[ \begin{align} a_4 - a_3 &= \frac{2 \cdot 4 \cdot 6 \cdot 8}{1 \cdot 3 \cdot 5 \cdot 7} - \frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5} \\ \\ &= \frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5} \cdot \left(\frac{8}{7} - 1 \right) \\ \\ &= \frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5} \cdot \frac{1}{7} \\ \\ &= a_3 \cdot \frac{1}{7} \\ \end{align} \] This allows us to find a differential equation for \(y(u)\): \[ \begin{align} y(u) \cdot \left( 1 - u^2 \right) &= \sum_{k=0}^{\infty} a_{k} \; u^{2k} \cdot \left( 1 - u^2 \right) \\ \\ &= \sum_{k=0}^{\infty} a_{k} \; u^{2k} - \sum_{k=0}^{\infty} a_{k} \; u^{2k+2} \\ \\ &= \sum_{k=0}^{\infty} a_{k} \; u^{2k} - \sum_{k=1}^{\infty} a_{k-1} \; u^{2k} \\ \\ &= 1 + \sum_{k=1}^{\infty} \left( a_{k} - a_{k-1} \right) \; u^{2k} \\ \\ &= 1 + \sum_{k=1}^{\infty} a_{k-1} \cdot \frac{1}{2k-1} \; u^{2k} \\ \\ \frac{y(u) \cdot \left( 1 - u^2 \right)}{u} &= \frac{1}{u} + \sum_{k=1}^{\infty} a_{k-1} \cdot \frac{1}{2k-1} \; u^{2k-1} \\ \\ \frac{\mathrm{d}}{\mathrm{d} u} \; y(u) \cdot (\frac{1}{u} - u) &= - \frac{1}{u^2} + \sum_{k=1}^{\infty} a_{k-1} \; u^{2k-2} \\ \\ \frac{\mathrm{d}}{\mathrm{d} u} \; y(u) \cdot (\frac{1}{u} - u) &= - \frac{1}{u^2} + \sum_{k=0}^{\infty} a_{k} \; u^{2k} \\ \\ \frac{\mathrm{d}}{\mathrm{d} u} \; y(u) \cdot (\frac{1}{u} - u) &= - \frac{1}{u^2} + y(u) \\ \end{align} \] Solution I'm a bit lazy, so I just post the step-by-step solution that WolframAlpha gave me: To calculate \(\mu(u)\) use: Back Substitution What's left is using the initial condition \(y(0) = 1\) to deduce that \(c_1 = 0\) and replace \(u\) by: \[ \begin{align} u &= \frac{\sqrt{x}}{2} \\ \end{align} \] |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 5 Guest(s)