Simplex method in prime how to use the constrains maximise s.t. constraints.
|
11-17-2023, 12:25 AM
(This post was last modified: 11-17-2023 12:33 AM by Gil.)
Post: #66
|
|||
|
|||
RE: Simplex method in prime how to use the constrains maximise s.t. constraints.
And try this tricky case:
{ [[ 1 -1 0 0 1 0 0 'E' 3 ] [ -3 2 9 2 0 -2 0 'E' 22 ] [ 0 1 0 0 0 -1 0 'E' 2 ] [ 4 3 5 0 1 0 -1 'E' 4 ] [ -1 0 3 -1 0 0 0 0 'Max' ]] E for equal "{ :S = \\GS(\\Gli*Sol i): with :0\\<=\\Gli\\<=: 1 :\\GS\\Gl: 1 : Main Sol 1,as Zrow=0: in.Col\\1661\\166final.STEPS Var\\|>7\\166Steps\\|>15 Time\\|>8\\166s : Z-Max: 6 :x1: 0 :x2: 2 :x3: 2 :x4: 0 :x5: 5 :x6: 0 :x7: 17 : Main Sol 2,as Zrow=0: inCol\\{ [[ 1 -1 0 0 1 0 0 'E' 3 ] [ -3 2 9 2 0 -2 0 'E' 22 ] [ 0 1 0 0 0 -1 0 'E' 2 ] [ 4 3 5 0 1 0 -1 'E' 4 ] [ -1 0 3 -1 0 0 0 0 'Max' ]] "{ :S = \\GS(\\Gli*Sol i): with :0\\<=\\Gli\\<=: 1 :\\GS\\Gl: 1 : Main Sol 1,as Zrow=0: in.Col\\1661\\166final.STEPS Var\\|>7\\166Steps\\|>15 Time\\|>8\\166s : Z-Max: 6 :x1: 0 :x2: 2 :x3: 2 :x4: 0 :x5: 5 :x6: 0 :x7: 17 : Main Sol 2,as Zrow=0: inCol\\1661\\166addit.STEPS Var\\|>7\\166Steps\\|>16 Time\\|>10\\166s : Z-Max: 6 :x1: 5 :x2: 2 :x3: [ '11/3' 3.66666666667 ] :x4: 0 :x5: 0 :x6: 0 :x7: [ '121/3' 40.3333333333 ] : Or not? SIMPLEX Sol i: { [ 5 2 '11/3' 0 0 0 '121/3' ] [ 0 2 2 0 5 0 17 ] } :+\\Gm12[\\>=0]*d, d: { [ 1 1 '1/3' 0 0 1 '26/3' ] [ 0 1 0 0 1 1 4 ] } : \\->Mixed Solution: 0\\<=\\Gl\\<=1 \\Gl(Sol 1) + (1-\\Gl) * (not? SIMPLEX Sol 2): Plus :\\Gm12[\\>=0]*d, d: { [ 1 1 '1/3' 0 0 1 '26/3' ] [ 0 1 0 0 1 1 4 ] } }" }.STEPS Var\\|>7\\166Steps\\|>16 Time\\|>10\\166s : Z-Max: 6 :x1: 5 :x2: 2 :x3: [ '11/3' 3.66666666667 ] :x4: 0 :x5: 0 :x6: 0 :x7: [ '121/3' 40.3333333333 ] : Or not? SIMPLEX Sol i: { [ 5 2 '11/3' 0 0 0 '121/3' ] [ 0 2 2 0 5 0 17 ] } :+\\Gm12[\\>=0]*d, d: { [ 1 1 '1/3' 0 0 1 '26/3' ] [ 0 1 0 0 1 1 4 ] } : \\->Mixed Solution: 0\\<=\\Gl\\<=1 \\Gl(Sol 1) + (1-\\Gl) * (not? SIMPLEX Sol 2): Plus :\\Gm12[\\>=0]*d, d: { [ 1 1 '1/3' 0 0 1 '26/3' ] [ 0 1 0 0 1 1 4 ] } }" } Here, 2 main solutions L(sol1) + (1-L)sol2+ mu1× [ 1 1 '1/3' 0 0 1 '26/3' ] +mu2 ×[ 0 1 0 0 1 1 4 ], with mu1& mu2 free It was for me quite a nightmare to solve these cases. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)