Post Reply 
0^0
11-25-2023, 12:47 PM (This post was last modified: 11-25-2023 05:16 PM by Albert Chan.)
Post: #5
RE: 0^0
(11-24-2023 09:41 PM)Albert Chan Wrote:  Limit depends on relative rate of base and exponent shrink to 0
For example, we have identity: ε ^ (1/ln(ε)) = e

If absolute of exponent shrink slower, we get 0^0=0
Cas> limit(ε ^ (1/(-ln(ε))^0.99999), ε, 0, 1)      → 0

If absolute of exponent shrink faster, we get 0^0=1
Cas> limit(ε ^ (1/(-ln(ε))^1.00001), ε, 0, 1)      → 1

Cas> assume(p > 0)
Cas> limit(ε ^ (ε^p), ε, 0, 1)      → 1

ε^0, ε^√ε, ε^(ε*(polynomial of ε)) ... all have 0^0=1
This explained why define 0^0=1 is so useful, even though it is not the truth.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
0^0 - Albert Chan - 11-24-2023, 05:43 PM
RE: 0^0 - Werner - 11-24-2023, 05:56 PM
RE: 0^0 - klesl - 11-24-2023, 08:14 PM
RE: 0^0 - Albert Chan - 11-24-2023, 09:41 PM
RE: 0^0 - Albert Chan - 11-25-2023 12:47 PM



User(s) browsing this thread: 1 Guest(s)