0^0
|
11-25-2023, 12:47 PM
(This post was last modified: 11-25-2023 05:16 PM by Albert Chan.)
Post: #5
|
|||
|
|||
RE: 0^0
(11-24-2023 09:41 PM)Albert Chan Wrote: Limit depends on relative rate of base and exponent shrink to 0 If absolute of exponent shrink slower, we get 0^0=0 Cas> limit(ε ^ (1/(-ln(ε))^0.99999), ε, 0, 1) → 0 If absolute of exponent shrink faster, we get 0^0=1 Cas> limit(ε ^ (1/(-ln(ε))^1.00001), ε, 0, 1) → 1 Cas> assume(p > 0) Cas> limit(ε ^ (ε^p), ε, 0, 1) → 1 ε^0, ε^√ε, ε^(ε*(polynomial of ε)) ... all have 0^0=1 This explained why define 0^0=1 is so useful, even though it is not the truth. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
0^0 - Albert Chan - 11-24-2023, 05:43 PM
RE: 0^0 - Albert Chan - 11-24-2023, 09:41 PM
RE: 0^0 - Albert Chan - 11-25-2023 12:47 PM
|
User(s) browsing this thread: 1 Guest(s)