(HP71B) Eigenvalues of Symmetric Real Matrix
|
11-27-2023, 08:07 PM
Post: #8
|
|||
|
|||
RE: (HP71B) Eigenvalues of Symmetric Real Matrix
Hi, Werner
Sorry for the confusion. I am basing on bij = tan( 1/4 * (2θ = atan(2*aij / (aii - ajj))) ) , i ≠ j, aij ≠ 0 Except edge cases, bij = tan(θ/2) , |θ/2| ≤ pi/8 ≈ 0.3927 From https://en.wikipedia.org/wiki/Cayley_transform#Examples, this may be why AFH code work. LHS matches AFH code of half-angle tan, reversed sign, and zero diagonal. RHS = Cayley transformed LHS, matches rotation matrix. Perhaps same idea can be extended from 2x2 to nxn matrix? |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(HP71B) Eigenvalues of Symmetric Real Matrix - Albert Chan - 11-26-2023, 05:16 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Thomas Klemm - 11-26-2023, 07:20 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Albert Chan - 11-26-2023, 07:41 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Werner - 11-27-2023, 07:01 AM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Werner - 11-26-2023, 07:44 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Albert Chan - 11-26-2023, 09:26 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Albert Chan - 11-26-2023, 10:05 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Albert Chan - 11-27-2023 08:07 PM
RE: (HP71B) Eigenvalues of Symmetric Real Matrix - Werner - 11-27-2023, 08:51 PM
|
User(s) browsing this thread: 3 Guest(s)