8÷2(1+3)
|
12-03-2023, 10:31 PM
Post: #9
|
|||
|
|||
RE: 8÷2(1+3)
I didn't learn algebra with PEMDAS. So I'm a bit confused.
Does this really mean addition before subtraction? And multiplication before division? How would you parse the following expressions? \(1 - 2 + 3\) \( \begin{matrix} a) & (1 - 2) + 3 & = & 2 \\ b) & 1 - (2 + 3) & = & -4 \\ \end{matrix} \) \(1 - 2 - 3\) \( \begin{matrix} a) & (1 - 2) - 3 & = & -4 \\ b) & 1 - (2 - 3) & = & 2 \\ \end{matrix} \) \(1 \div 2 \times 3\) \( \begin{matrix} a) & (1 \div 2) \times 3 & = & \frac{3}{2} \\ b) & 1 \div (2 \times 3) & = & \frac{1}{6} \\ \end{matrix} \) \(1 \div 2 \div 3\) \( \begin{matrix} a) & (1 \div 2) \div 3 & = & \frac{1}{6} \\ b) & 1 \div (2 \div 3) & = & \frac{3}{2} \\ \end{matrix} \) If all your answers are \(a)\) then why on earth should implied multiplication make any difference? In my understanding the operations \(-\) and \(\div\) are left-associative. The operations \(+\) and \(\times\) are associative. And the power-operation is right-associative. Ok, I understand that maybe in the seventies it was hard to type something like the following in a paper: \( c_k = \frac{1}{2 \sqrt{\pi}} \cdots \) Thus instead of writing on a typewriter: 1 c = ------ ... k __ 2 -/pi You'd rather write: __ c = 1/2 -/pi ... k But is that reason enough to come up with a special rule about implied multiplication? The following expression is not ambiguous: \( \frac{1}{2\sqrt{3}} \) It only becomes a problem once you enter it into a calculator. In Mathematica I'd enter it as: 1/(2Sqrt[3]) This leads to: 0.288675... And yes, I'd be surprised if a calculator gives the same result if I enter: \(1\div2\sqrt{3}\). |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
RE: 8÷2(1+3) - rprosperi - 12-03-2023, 01:55 PM
RE: 8÷2(1+3) - Valentin Albillo - 12-03-2023, 02:43 PM
RE: 8÷2(1+3) - dm319 - 12-03-2023, 04:11 PM
RE: 8÷2(1+3) - dm319 - 12-03-2023, 06:50 PM
RE: 8÷2(1+3) - Johnh - 12-03-2023, 08:09 PM
No, never, not even once - striegel - 12-03-2023, 10:11 PM
RE: 8÷2(1+3) - Maximilian Hohmann - 12-03-2023, 10:25 PM
RE: 8÷2(1+3) - Thomas Klemm - 12-03-2023 10:31 PM
RE: 8÷2(1+3) - dm319 - 12-03-2023, 11:15 PM
RE: 8÷2(1+3) - Thomas Klemm - 12-04-2023, 12:09 AM
RE: 8÷2(1+3) - Thomas Klemm - 12-04-2023, 12:30 AM
RE: 8÷2(1+3) - Eddie W. Shore - 12-04-2023, 01:15 AM
RE: 8÷2(1+3) - John Garza (3665) - 12-04-2023, 06:42 AM
RE: 8÷2(1+3) - dm319 - 12-04-2023, 09:46 AM
RE: 8÷2(1+3) - toml_12953 - 12-06-2023, 09:42 AM
RE: 8÷2(1+3) - Steve Simpkin - 12-04-2023, 12:30 AM
RE: 8÷2(1+3) - klesl - 12-04-2023, 11:25 AM
RE: 8÷2(1+3) - johnb - 12-04-2023, 08:05 PM
|
User(s) browsing this thread: 1 Guest(s)