Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
|
01-17-2024, 02:01 PM
Post: #16
|
|||
|
|||
RE: Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
Some "guessed" results for input z =a+ib, with a = -INF:
W-3(-INF +i20) = inf-i(5pi) W-3(-INF - i20) = inf-i(7pi) W-2(-INF +i20) = inf-i(3pi) W-2(-INF - i20) = inf-i(5pi) W-1(-INF +i20) = inf-i(pi) W-1(-INF - i20) = inf-i(3pi) W0(-INF +i20) = inf+i(pi) W0(-INF - i20) = inf-i(pi) W1(-INF + i20) = inf+i(5pi) W1(-INF - i20) = inf+i(3pi) W2(-INF + i20) = inf+i(5pi) W2(-INF - i20) = inf+i(pi) W3(-INF + i20) = inf+i(7pi) W3(-INF - i20) = inf+i(5pi) Wk(-INF, +ib, b>0) = inf+i(2k+1)(pi) Wk(-INF, +ib, b<0) = inf+i(2k+1-2)(pi) Wk(-INF, +ib, b>0) = inf+i(2k+1)(pi) Wk(-INF, +ib, b<0) = inf+i(2k-1)(pi) Conclusion Wk(-INF, +ib, b≠0) = inf+i(2k+sign(b))(pi) & we may check Wk(-INF, +ib, b=0) = inf+i(2k+1)(pi) Summary Wk(-INF, +ib) =inf+i(pi) *(2k+1, if b>=0; 2k-1, if b<0) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 7 Guest(s)