Post Reply 
Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
01-17-2024, 02:39 PM (This post was last modified: 01-18-2024 12:11 AM by Gil.)
Post: #17
RE: Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
Now Wk(inf +ib)

W-3(INF +i20) = inf-i(6pi)
W-3(INF - i20) = inf-i(6pi)

W-3(-INF - i20) = inf-i(5pi)
W-3(-INF + i20) = inf-i(7pi)
W-3(-INF - i0) = inf-i(5pi)

W-2(INF +i20) = inf-i(4pi)
W-2(INF - i20) = inf-i(4pi)

W-1(INF +i20) = inf-i(2pi)
W-1(INF - i20) = inf-i(2pi)

W0(INF +i20) = inf-i(0pi)
W0(INF - i20) = inf-i(0pi)

W1(INF +i20) = inf+i(2pi)
W1(INF - i20) = inf+i(2pi)

W2(INF +i20) = inf+i(4pi)
W2(INF - i20) = inf+i(4pi)

W2(INF +i0) = inf+i(4pi)

Conclusion & summary for Wk(inf+ib)
Wk(INF +ib) = inf+2ik


z=a+ib, a=±infinity, b≠±infinity
Wk(±infinity+ib) =+inf +
i × (2k, if a>0; (else 2k+1, if b>=0; 2k-1, else))
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: Lambert function and Wolfram or "±infinity+i×K=±infinity" ? - Gil - 01-17-2024 02:39 PM



User(s) browsing this thread: 7 Guest(s)