Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
|
01-17-2024, 02:39 PM
(This post was last modified: 01-18-2024 12:11 AM by Gil.)
Post: #17
|
|||
|
|||
RE: Lambert function and Wolfram or "±infinity+i×K=±infinity" ?
Now Wk(inf +ib)
W-3(INF +i20) = inf-i(6pi) W-3(INF - i20) = inf-i(6pi) W-3(-INF - i20) = inf-i(5pi) W-3(-INF + i20) = inf-i(7pi) W-3(-INF - i0) = inf-i(5pi) W-2(INF +i20) = inf-i(4pi) W-2(INF - i20) = inf-i(4pi) W-1(INF +i20) = inf-i(2pi) W-1(INF - i20) = inf-i(2pi) W0(INF +i20) = inf-i(0pi) W0(INF - i20) = inf-i(0pi) W1(INF +i20) = inf+i(2pi) W1(INF - i20) = inf+i(2pi) W2(INF +i20) = inf+i(4pi) W2(INF - i20) = inf+i(4pi) W2(INF +i0) = inf+i(4pi) Conclusion & summary for Wk(inf+ib) Wk(INF +ib) = inf+2ik z=a+ib, a=±infinity, b≠±infinity Wk(±infinity+ib) =+inf + i × (2k, if a>0; (else 2k+1, if b>=0; 2k-1, else)) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 7 Guest(s)