Post Reply 
lambertw, all branches
01-20-2024, 10:52 PM (This post was last modified: 01-20-2024 11:49 PM by Gil.)
Post: #19
RE: lambertw, all branches
I looked your case k=-1 & k=1, x=-.1 + i ×1E-99.

With my initial guess=
'LN(((-.1,1.E-100)+1./e)*(e-\v/2.-1.)+\v/(((-.1,1.E-100)+1./e)*2./e)+1./e)'

= (-.11284787341,1.26802807724E-100),

the built-in multisolver from HP50 runs endless.

I looked in your programs, but could not understand which initial Xo formulae I should use for tiny imaginary part.

I tried, from what I guessed from your code, as a guess xo=ln(-a), and it worked.

When should I used that guess formula for my initial guess?

For example, xo=ln(-a) failed to produce any answer for
W0((1.E-100,-.0000000001)): a bad guess.

I had to use instead the first formulae to get an answer for
W0((1.E-100,-.0000000001)): (9.99905166733E-21,-1.00000000005E-10).

And what do you mean by I.log(-a)?
Is I.log(-x) a special function or is it i×ln(-x).

Could you help me on that matter?

Thanks in advance.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
lambertw, all branches - Albert Chan - 04-07-2023, 01:24 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 02:47 PM
RE: lambertw, all branches - Albert Chan - 04-19-2023, 01:30 AM
RE: lambertw, all branches - pier4r - 04-07-2023, 06:04 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 07:54 PM
RE: lambertw, all branches - Albert Chan - 04-08-2023, 03:21 PM
RE: lambertw, all branches - Albert Chan - 04-08-2023, 05:54 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 08:40 PM
RE: lambertw, all branches - Albert Chan - 04-09-2023, 03:59 AM
RE: lambertw, all branches - Albert Chan - 04-09-2023, 04:36 PM
RE: lambertw, all branches - Albert Chan - 04-10-2023, 04:44 PM
RE: lambertw, all branches - Albert Chan - 04-10-2023, 06:47 PM
RE: lambertw, all branches - Albert Chan - 04-13-2023, 03:03 PM
RE: lambertw, all branches - floppy - 04-13-2023, 04:14 PM
RE: lambertw, all branches - Albert Chan - 04-23-2023, 02:49 PM
RE: lambertw, all branches - Albert Chan - 04-23-2023, 04:40 PM
RE: lambertw, all branches - Albert Chan - 01-19-2024, 04:14 PM
RE: lambertw, all branches - Albert Chan - 01-20-2024, 04:48 PM
RE: lambertw, all branches - Gil - 01-20-2024 10:52 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 01:14 AM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 01:54 AM
RE: lambertw, all branches - Gil - 01-21-2024, 01:53 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 04:19 PM
RE: lambertw, all branches - Gil - 01-21-2024, 04:35 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 06:03 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 07:01 PM
RE: lambertw, all branches - Gil - 01-21-2024, 07:30 PM
RE: lambertw, all branches - Gil - 01-21-2024, 08:39 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 10:06 PM
RE: lambertw, all branches - Gil - 01-21-2024, 09:51 PM
RE: lambertw, all branches - Gil - 01-21-2024, 10:56 PM
RE: lambertw, all branches - Albert Chan - 01-22-2024, 01:34 AM
RE: lambertw, all branches - Gil - 01-21-2024, 11:15 PM
RE: lambertw, all branches - Gil - 01-22-2024, 06:09 PM
RE: lambertw, all branches - Albert Chan - 01-22-2024, 07:29 PM
RE: lambertw, all branches - Gil - 01-22-2024, 11:33 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 02:32 AM
RE: lambertw, all branches - Gil - 01-23-2024, 02:35 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 03:54 PM
RE: lambertw, all branches - Gil - 01-23-2024, 04:57 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 06:17 PM
RE: lambertw, all branches - Gil - 01-23-2024, 06:44 PM
RE: lambertw, all branches - Gil - 01-23-2024, 11:00 PM
RE: lambertw, all branches - Gil - 01-24-2024, 03:18 PM
RE: lambertw, all branches - Albert Chan - 01-24-2024, 08:53 PM
RE: lambertw, all branches - Gil - 01-25-2024, 12:37 AM
RE: lambertw, all branches - Gil - 01-25-2024, 01:10 AM
RE: lambertw, all branches - Gil - 01-25-2024, 03:04 AM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 07:02 AM
RE: lambertw, all branches - Gil - 01-25-2024, 10:09 AM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 04:13 PM
RE: lambertw, all branches - Gil - 01-25-2024, 05:14 PM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 05:57 PM
RE: lambertw, all branches - Gil - 01-25-2024, 06:19 PM
RE: lambertw, all branches - Albert Chan - 01-28-2024, 11:18 PM
RE: lambertw, all branches - Albert Chan - 02-01-2024, 02:17 AM
RE: lambertw, all branches - Albert Chan - 02-01-2024, 04:16 PM
RE: lambertw, all branches - Albert Chan - 02-02-2024, 11:49 AM



User(s) browsing this thread: 1 Guest(s)