Approximating function derivatives
|
01-26-2024, 01:32 PM
Post: #6
|
|||
|
|||
RE: Approximating function derivatives
(01-24-2024 02:31 PM)Pekis Wrote: It seems nice for f(x0) and f'(x0), acceptable for f"(x0), but looses precision for f"'(x0) f(x0+h) = f(x0) + f'(x0)*h + f''(x0)*h²/2! + f'''(x0)*h³/2! + O(h4) if we fit points f(x0±h), f(x0±2h), and estimate f(x0), error = O(h4) Rewrite same taylor series, horner style f(x0+h) = f(x0) + h*( f'(x0) + h/2*( f''(x0) + h/3*( f'''(x0) + O(h) ))) Estimated f'''(x0) has error = O(h), much worse. (01-26-2024 08:33 AM)Thomas Klemm Wrote: Even derivatives Let f±k = fk + f-k, where fk = f(x0 + k*h) Ignore O(h^4), solve for f''(x0), we have: \(\displaystyle {f}''(x_0) ≈ \left(-\frac{1}{3}f_{±1} + \frac{1}{3}f_{±2}\right) /\,h^2 \) If we have the missing gap, (x0, f(x0)), f''(x0) can be estimated slightly better. \( \begin{align} (f_{±1} - 2 f_{0}) &= {f}''(x_0)\; h^2 + \mathcal{O}(h^4) \\ (f_{±2} - 2 f_{0}) &= {f}''(x_0)\; (2h)^2 + \mathcal{O}((2h)^4) \\ \end{align} \) Instead of ignore error terms, this time we cancel them: \( 16×(f_{±1} - 2 f_0) - (f_{±2} - 2 f_0) ≈ {f}''(x_0)\; h^2 × (16 - 4) \) \(\displaystyle {f}''(x_0) ≈ \left(-\frac{5}{2}f_0 + \frac{4}{3}f_{±1} - \frac{1}{12}f_{±2}\right) /\,h^2 \) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)