Approximating function derivatives
|
01-28-2024, 01:37 AM
Post: #12
|
|||
|
|||
RE: Approximating function derivatives
Hi, Namir
You could still do 2 function calls per Newton step, yet getting much better correction! \(\displaystyle \frac{f(x)}{f'(x)} = \frac {\frac{f(x+h) + f(x-h)}{2} + \mathcal{O}(h^2)} {\frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)} ≈ \frac{f(x+h) + f(x-h)}{f(x+h) - f(x-h)} ×h \) see thread (HP71B) Newton's method |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)