Approximating function derivatives
|
01-29-2024, 02:27 PM
Post: #20
|
|||
|
|||
RE: Approximating function derivatives
(01-29-2024 01:25 PM)Namir Wrote: I used an initial guess of 6 for exp(x)-3*x^2 and 1e-16 as the tolerance for x. Ah, I missed the big root. Since I expected quadratic convergence, I set eps = 1e-9, initial h = 1e-3 Again, h is decreasing along with dx, not a fixed number. lua> S = require'solver' lua> f = fn'x:exp(x) - 3*x^2' lua> S.newton(f, 6, 1e-3, 1e-9, true) 6 5.195955942003588 4.52948873087134 4.053975908526381 3.80408413181784 3.737403183742807 3.7330961934908533 3.7330790288874782 3.7330790286328144 17 lua> f(_) 7.105427357601002e-15 This is very similar to true Newton's method lua> df = fn'x:exp(x) - 6*x' lua> x = 6 lua> for i=1,9 do print(x); x = x-f(x)/df(x) end 6 5.195956335690451 4.529489328402691 4.053976528531787 3.8040845309684834 3.7374032842820784 3.733096198370094 3.733079028904745 3.7330790286328144 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)