(HP71B) integer determinant
|
02-16-2024, 11:16 PM
Post: #2
|
|||
|
|||
RE: (HP71B) integer determinant
OP last example, step by step. (pivot taken from top left corner)
Because of delayed divison, all intermediate matrix cells are integers. \( \begin{vmatrix} 13 & 72 & 57 & 94 & 90 & 92 & 35 \\ 40 & 93 & 90 & 99 & 1 & 95 & 66 \\ 48 & 91 & 71 & 48 & 93 & 32 & 67 \\ 7 & 93 & 29 & 2 & 24 & 24 & 7 \\ 41 & 84 & 44 & 40 & 82 & 27 & 49 \\ 3 & 72 & 6 & 33 & 97 & 34 & 4 \\ 43 & 82 & 66 & 43 & 83 & 29 & 61 \end{vmatrix} \) \( = \begin{vmatrix} -1671 & -1110 & -2473 & -3587 & -2445 & -542 \\ -2273 & -1813 & -3888 & -3111 & -4000 & -809 \\ 705 & -22 & -632 & -318 & -332 & -154 \\ -1860 & -1765 & -3334 & -2624 & -3421 & -798 \\ 720 & -93 & 147 & 991 & 166 & -53 \\ -2030 & -1593 & -3483 & -2791 & -3579 & -712 \end{vmatrix} ÷ (13)^5 \) \( = \begin{vmatrix} 38961 & 67363 & -227290 & 86655 & 9221 \\ 63024 & 215349 & 235401 & 175269 & 49188 \\ 68055 & 74718 & -175932 & 89907 & 25026 \\ 73431 & 118071 & 71283 & 114078 & 36831 \\ 31431 & 61531 & -201373 & 78243 & 6884 \end{vmatrix} ÷ (-1671)^4 \) \( = \begin{vmatrix} -2480387 & -14061151 & -818259 & -799084 \\ 1001377 & -5154838 & 1432938 & -207961 \\ 207282 & -11650143 & 1148157 & -453540 \\ -167578 & 419953 & -194358 & 12937 \end{vmatrix} ÷ (38961)^3 \) \( = \begin{vmatrix} 689574353 & -70194683 & 33777575 \\ 816495643 & -68742161 & 33125188 \\ -87215049 & 8854004 & -4260611 \end{vmatrix} ÷ (-2480387)^2 \) \( = \begin{vmatrix} -3995675528 & 1909767603 \\ 6667765 & -3186916 \end{vmatrix} ÷ (689574353)^1 \) \( = \begin{vmatrix} 1 \\ \end{vmatrix} ÷ (-3995675528)^0 = 1 \) Ref: Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination, by Erwin H. Bareiss |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(HP71B) integer determinant - Albert Chan - 02-16-2024, 10:36 PM
RE: (HP71B) integer determinant - Albert Chan - 02-16-2024 11:16 PM
RE: (HP71B) integer determinant - Albert Chan - 02-17-2024, 05:03 PM
RE: (HP71B) integer determinant - robve - 02-18-2024, 03:05 PM
RE: (HP71B) integer determinant - Albert Chan - 02-18-2024, 03:33 PM
RE: (HP71B) integer determinant - J-F Garnier - 02-21-2024, 08:23 AM
RE: (HP71B) integer determinant - Albert Chan - 02-21-2024, 01:31 PM
|
User(s) browsing this thread: 4 Guest(s)