Incorrect answer in indefinite integration (HP Prime)
|
02-29-2024, 04:42 PM
Post: #7
|
|||
|
|||
RE: Incorrect answer in indefinite integration (HP Prime)
(02-28-2024 07:00 PM)ReinXXL Wrote: why is there a -2 at the end? We can consider the singularity at \(x=-2\) a natural lower bound of the definite integral. This choice of the integral constant makes it \(0\) at that value: \( \begin{align} F(x) &= \int_{-2}^{x} \log(t+2) \; \mathrm{d}t \\ \\ &= (t+2) \log(t+2) - t \Big|_{-2}^x \\ \\ &= (x+2) \log(x+2) - x - 2 \\ \end{align} \) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Incorrect answer in indefinite integration (HP Prime) - ReinXXL - 02-28-2024, 07:00 PM
RE: Incorrect answer in indefinite integration (HP Prime) - rkf - 02-29-2024, 08:55 AM
RE: Incorrect answer in indefinite integration (HP Prime) - lrdheat - 02-29-2024, 02:25 PM
RE: Incorrect answer in indefinite integration (HP Prime) - KeithB - 02-29-2024, 02:46 PM
RE: Incorrect answer in indefinite integration (HP Prime) - carey - 02-29-2024, 03:42 PM
RE: Incorrect answer in indefinite integration (HP Prime) - toml_12953 - 02-29-2024, 05:47 PM
RE: Incorrect answer in indefinite integration (HP Prime) - chromos - 02-29-2024, 04:31 PM
RE: Incorrect answer in indefinite integration (HP Prime) - Thomas Klemm - 02-29-2024 04:42 PM
RE: Incorrect answer in indefinite integration (HP Prime) - parisse - 02-29-2024, 06:23 PM
|
User(s) browsing this thread: 1 Guest(s)