[VA] SRC #017 - April 1st, 2024 Spring Special
|
04-03-2024, 08:55 PM
(This post was last modified: 04-03-2024 09:28 PM by Gerson W. Barbosa.)
Post: #6
|
|||
|
|||
RE: [VA] SRC #017 - April 1st, 2024 Spring Special
LOL the First
HP-75C program: 10 OPTION BASE 0 15 INTEGER I,J,N 20 N=5 25 B=1000000 30 DIM A(9),B(5),C(12) 35 REM DIM A(N+4), B(N), C(2*N+2); N>1 40 FOR I=0 TO 2*N+2 @ C(I)=0 @ NEXT I 45 FOR I=0 TO N+4 @ A(I)=0 @ NEXT I 50 FOR I=1 TO N 55 READ A(I) 60 B(I)=A(I) 65 NEXT I 70 FOR I=N TO 1 STEP -1 75 T1=0 @ A1=0 80 FOR J=N-I+4 TO -1 STEP -1 85 C2=(T1+B(I)*A(J+1))/B 90 A1=FP(C2)*B 95 C(I+J)=C(I+J)+A1 100 T1=IP(C2) 105 NEXT J 110 NEXT I 115 FOR I=2*N TO 2 STEP -1 120 T=C(I)/B 125 C(I)=FP(T)*B 130 C(I-1)=C(I-1)+IP(T) 135 NEXT I 140 FOR I=0 TO 2*N-1 145 DISP C(I); 150 NEXT I 155 END 160 DATA 141422,82876,67219,949805,50005 >RUN 20000 205525 5225 202000 505202 222520 222202 205205 550 500025 That is, 141422082876067219949805050005^2 = 20000205525005225202000505202222520222202205205000550500025 ----- LOL the Fifth: I have digressed on this one and haven't done what has been asked (No cigar, I guess :-). I'll just say the fractional part tends to 1 minus a known mathematical constant to which the following is a pandigital appoximation in RPL algebraic expression format, good to twelve digits: 'INV(√(3+7/((29/10)^8-INV(SQ((4^5)^INV(6))))))' On the HP 50g in approximate mode, '1 - INV(√(3+7/((29/10)^8-INV(SQ((4^5)^INV(6))))))' should return the same numeric result as '1+Psi(1)'. Edited to fix a typo |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 11 Guest(s)