Mathematician Finds Easier Way to Solve Quadratic Equations
|
05-12-2024, 08:10 PM
(This post was last modified: 05-12-2024 10:33 PM by Thomas Klemm.)
Post: #61
|
|||
|
|||
RE: Mathematician Finds Easier Way to Solve Quadratic Equations
Double Angle Formulae
We start with the double angle formula for the sine: \( \begin{align} \sin(2 \alpha) &= \frac{2 \sin(\alpha) \cos(\alpha)}{1} \\ \\ &= \frac{2 \sin(\alpha) \cos(\alpha)}{\cos(\alpha)^2 + \sin(\alpha)^2} \\ \\ &= \frac{2 \tan(\alpha)}{1 + \tan(\alpha)^2} \\ \end{align} \) And similarly for the tangent: \( \begin{align} \tan(2 \alpha) &= \frac{\sin(2 \alpha)}{\cos(2 \alpha)} \\ \\ &= \frac{2 \sin(\alpha) \cos(\alpha)}{\cos(\alpha)^2 - \sin(\alpha)^2} \\ \\ &= \frac{2 \tan(\alpha)}{1 - \tan(\alpha)^2} \\ \end{align} \) Therefore both can be calculated using \(t := \tan(\alpha)\): \( \begin{align} \sin(2 \alpha) &= \frac{2 t}{1 + t^2} \\ \\ \tan(2 \alpha) &= \frac{2 t}{1 - t^2} \\ \end{align} \) Solving the Quadratic Equation using \(\sin^{-1}\) The first formula allows us to solve the following quadratic equation: \( t^2 - 2r \; t + 1 = 0 \) We set \(r := \frac{1}{\sin(2 \alpha)}\) and rearrange the equation: \( \begin{align} \frac{1}{r} = \frac{2 t}{1 + t^2} \\ \\ 1 + t^2 = 2t \; r \\ \\ t^2 - 2r \; t + 1 = 0 \\ \end{align} \) So how can we use this to solve the quadratic equation: \(x^2 + px + q = 0\) ? We assume \(q > 0\) so we can substitute: \(x = \sqrt{q} \; t\) With this we get: \( \begin{align} x^2 + px + q &= 0 \\ q t^2 + \sqrt{q} pt + q &= 0 \\ t^2 + \frac{p}{\sqrt{q}} t + 1 &= 0 \\ \end{align} \) We just have to set: \( \begin{align} -2r &= \frac{p}{\sqrt{q}} \\ r &= - \frac{p}{2\sqrt{q}} \\ \end{align} \) But now we only have to stick everything together: \( \begin{align} x &= \sqrt{q} \; t \\ \\ &= \sqrt{q} \; \tan(\alpha) \\ \\ &= \sqrt{q} \; \tan\left(\frac{1}{2}\sin^{-1}\left(\sin(2 \alpha)\right)\right) \\ \\ &= \sqrt{q} \; \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{1}{r}\right)\right) \\ \\ &= \sqrt{q} \; \tan\left(\frac{1}{2}\sin^{-1}\left(- \frac{2\sqrt{q}}{p}\right)\right) \\ \end{align} \) Geometric Interpretation using the First Formula There's a nice geometric interpretation of the first formula using the inscribed angle theorem: I've already posted a similar picture in the previous post #36. We were solving: \(x^2 - cx + h^2 = 0\) Thus we'd end up with: \( \begin{align} r &= \frac{c}{2} \\ &= \frac{-p}{2} \\ \\ h^2 &= q \\ h &= \sqrt{q} \\ \\ \sin(2 \alpha) &= \frac{h}{r} \\ &= -\frac{2 \sqrt{q}}{p} \\ \end{align} \) Solving the Quadratic Equation using \(\tan^{-1}\) The second formula allows us to solve the following quadratic equation: \( t^2 + 2r \; t - 1 = 0 \) We set \(r := \frac{1}{\tan(2 \alpha)}\) and rearrange the equation: \( \begin{align} \frac{1}{r} = \frac{2 t}{1 - t^2} \\ \\ 1 - t^2 = 2t \; r \\ \\ t^2 + 2r \; t - 1 = 0 \\ \end{align} \) So how can we use this to solve the quadratic equation: \(x^2 + px + q = 0\) ? We assume \(q < 0\) so we can substitute: \(x = \sqrt{-q} \; t\) With this we get: \( \begin{align} x^2 + px + q &= 0 \\ -q t^2 + \sqrt{-q} pt + q &= 0 \\ t^2 + \frac{p}{\sqrt{-q}} t - 1 &= 0 \\ \end{align} \) We just have to set: \( \begin{align} 2r &= \frac{p}{\sqrt{-q}} \\ r &= \frac{p}{2\sqrt{-q}} \\ \end{align} \) But now we only have to stick everything together: \( \begin{align} x &= \sqrt{-q} \; t \\ \\ &= \sqrt{-q} \; \tan(\alpha) \\ \\ &= \sqrt{-q} \; \tan\left(\frac{1}{2}\tan^{-1}\left(\tan(2 \alpha)\right)\right) \\ \\ &= \sqrt{-q} \; \tan\left(\frac{1}{2}\tan^{-1}\left(\frac{1}{r}\right)\right) \\ \\ &= \sqrt{-q} \; \tan\left(\frac{1}{2}\tan^{-1}\left(\frac{2\sqrt{-q}}{p}\right)\right) \\ \end{align} \) Double Angle Formulae for Hyperbolic Functions We get similar double angle formulae for the hyperbolic sine and hyperbolic tangent: \( \begin{align} \sinh(2 \alpha) &= \frac{2 \tanh(\alpha)}{1 - \tanh(\alpha)^2} \\ \\ \tanh(2 \alpha) &= \frac{2 \tanh(\alpha)}{1 + \tanh(\alpha)^2} \\ \end{align} \) The astute reader may notice the change of the sign. A similar calculation leads to the following formulae: \( \begin{align} x &= \sqrt{-q} \; \tanh\left(\frac{1}{2}\sinh^{-1}\left(\frac{2\sqrt{-q}}{p}\right)\right) \\ \\ x &= \sqrt{q} \; \tanh\left(\frac{1}{2}\tanh^{-1}\left(- \frac{2\sqrt{q}}{p}\right)\right) \\ \end{align} \) Programs for the HP-42S These programs are all similar. They calculate only one of the solutions. If you want to use them with calculators that don't support complex numbers you may want to select the one that fits the sign of \(q\). q > 0 using sin-1: Code: 00 { 20-Byte Prgm } \(x^2 - 5x + 6 = 0\) -5 ENTER 6 XEQ "Q" 2 q < 0 using tan-1: Code: 00 { 20-Byte Prgm } \(x^2 + x - 6 = 0\) 1 ENTER -6 XEQ "Q" 2 q > 0 using tanh-1: Code: 00 { 20-Byte Prgm } \(x^2 - 5x + 6 = 0\) -5 ENTER 6 XEQ "Q" 2 q < 0 using sinh-1: Code: 00 { 20-Byte Prgm } \(x^2 + x - 6 = 0\) 1 ENTER -6 XEQ "Q" 2 References |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)