Post Reply 
Stoneham's series
06-04-2024, 07:57 PM
Post: #5
RE: Stoneham's series
In both cases we can use the infinite product representation of the sinc function:

\(
\begin{align}
\frac {\sin \pi z}{\pi z}=\prod _{n=1}^{\infty }\left(1-{\frac {z^{2}}{n^{2}}}\right)
\end{align}
\)

For \(z=\frac{1}{2}\) we have:

\(
\begin{align}
\frac {\sin \pi z}{\pi z}
&=\frac {\sin \pi \frac{1}{2}}{\pi \frac{1}{2}} \\
\\
&=\frac{2}{\pi} \\
\\
&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{(2n)^2}}\right) \\
\\
&=\prod _{n=1}^{\infty }\frac{(2n-1)(2n+1)}{(2n)(2n)} \\
\\
&=\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdots \\
\end{align}
\)

And thus:

\(
\begin{align}
\frac{\pi}{2}&=\frac{2 \cdot 2}{1 \cdot 3} \cdot \frac{4 \cdot 4}{3 \cdot 5} \cdot \frac{6 \cdot 6}{5 \cdot 7} \cdots \\
\\
\pi
&=4 \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \frac{4 \cdot 6}{5 \cdot 5} \cdot \frac{6 \cdot 8}{7 \cdot 7} \cdots \\
\\
&=4 \cdot \left(1 - \frac{1}{3^2}\right) \cdot \left(1 - \frac{1}{5^2}\right) \cdot \left(1 - \frac{1}{7^2}\right) \cdots \\
\end{align}
\)

Similarly for \(z=\frac{1}{4}\) we have:

\(
\begin{align}
\frac {\sin \pi z}{\pi z}
&=\frac {\sin \pi \frac{1}{4}}{\pi \frac{1}{4}} \\
\\
&=\frac{2 \sqrt{2}}{\pi} \\
\\
&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{(4n)^2}}\right) \\
\\
&=\prod _{n=1}^{\infty }\frac{(4n-1)(4n+1)}{(4n)(4n)} \\
\\
&=\frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{7 \cdot 9}{8 \cdot 8} \cdot \frac{11 \cdot 13}{12 \cdot 12} \cdots \\
\end{align}
\)

If we multiply both products we get:

\(
\begin{align}
\frac{\pi}{2} \cdot \frac{2 \sqrt{2}}{\pi}
&= \sqrt{2} \\
\\
&=\frac{2 \cdot 2}{1 \cdot 3} \cdot \frac{6 \cdot 6}{5 \cdot 7} \cdot \frac{10 \cdot 10}{9 \cdot 11} \cdots \\
\\
\sqrt{2} = \frac{2}{\sqrt{2}}
&= 2 \cdot \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdot \frac{9 \cdot 11}{10 \cdot 10} \cdots \\
\\
&=2 \cdot \left(1 - \frac{1}{4 \cdot 1^2}\right) \cdot \left(1 - \frac{1}{4 \cdot 3^2}\right) \cdot \left(1 - \frac{1}{4 \cdot 5^2}\right) \cdots \\
\end{align}
\)


This might remind you of the Wallis product for \(\pi\):
Proof using Euler's infinite product for the sine function
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Stoneham's series - ttw - 06-04-2024, 01:31 PM
RE: Stoneham's series - KeithB - 06-04-2024, 02:20 PM
RE: Stoneham's series - Nigel (UK) - 06-04-2024, 03:37 PM
RE: Stoneham's series - Thomas Klemm - 06-04-2024, 03:34 PM
RE: Stoneham's series - Thomas Klemm - 06-04-2024 07:57 PM
RE: Stoneham's series - Albert Chan - 06-04-2024, 08:44 PM
RE: Stoneham's series - Thomas Klemm - 06-05-2024, 04:20 AM
RE: Stoneham's series - Johnh - 06-07-2024, 07:55 PM
RE: Stoneham's series - Albert Chan - 06-07-2024, 08:54 PM
RE: Stoneham's series - Johnh - 06-08-2024, 03:07 AM
RE: Stoneham's series - Johnh - 06-08-2024, 05:02 AM
RE: Stoneham's series - Albert Chan - 06-08-2024, 05:16 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-09-2024, 10:36 PM
RE: Stoneham's series - Albert Chan - 06-11-2024, 05:12 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-12-2024, 07:01 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-14-2024, 05:42 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-18-2024, 05:42 AM
RE: Stoneham's series - Namir - 06-09-2024, 10:55 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-09-2024, 11:04 PM
RE: Stoneham's series - Gerson W. Barbosa - 06-11-2024, 02:31 AM



User(s) browsing this thread: 9 Guest(s)