Stoneham's series
|
06-12-2024, 07:01 PM
Post: #18
|
|||
|
|||
RE: Stoneham's series
(06-11-2024 05:12 PM)Albert Chan Wrote: I have trouble doing correction for √2 ... it just seems too complicated. Very nice! I presume finding the pattern of the numerators may have been particular troublesome, as they are not trivial. Your correction factor gives about two or perhaps 25/12 correct decimal digits per iteration: . n |2*Product(((4k - 2)^2 - 1)/(4k - 2)^2,{k,1,n})*(1 + -2/(32n + 1 + ContinuedFractionK[((4k)^2-1)^2/((2k)^2-1),32n,{k,1,n}])) .---+--------------------------------------------------------------------------------------------------------------------------- . 1 | 1.4151193633952254641910 | 1067/754 . 2 | 1.4142087816013794108361 | 465863/329416 . 3 | 1.4142135946217028898547 | 43179041/30532192 . 4 | 1.4142135621369493256490 | 99253807/70183040 . 5 | 1.4142135623748906144019 | 664950544227/470191038976 . 6 | 1.4142135623730811143616 | 153235360737661/108353762695168 . 7 | 1.4142135623730951582795 | 3602252403912943/2547177102352384 . 8 | 1.4142135623730950479347 | 620602650775941779/438832342786015232 . 9 | 1.4142135623730950488086 | 15082567717216397339/10664985910549020672 .10 | 1.4142135623730950488016 | 15606594740681145876391/11035528972365946421248 Of course, this is not adequate for computing the decimal digits of π or any other mathematical constant for that matter. Anyway, just as another mathematical curiosity, I thought of combining the Wallis Product and the Stoneham's product for √2/2: π/2=4/3.16/15.36/35.64/63.100/99.144/143. … √2/2=3/4.35/36.99/100. … π/2.√2/2=4/3.3/4.16/15.36/35.35/36.64/63.100/99.99/100.144/143. … π√2/4=16/15.64/33.144/143. … π=2.√2.Π[k=1,inf,(4k)^2/((4k)^2-1)] and π~2.√2.Π[k=1,n,(4k)^2/((4k)^2-1)]*c, where 'c' is a correction factor. Thanks for saving me the trouble to find a correction factor for this one! it turns out that yours for the √2 product almost exactly matches it: . n |2√2*Product((4k)^2/((4k)^2 - 1),{k,1,n})*(1 + 2/(32n + 15 + ContinuedFractionK[((4k)^2-1)^2/((2k)^2-1),32n + 16,{k,1,n}])) .---+-------------------------------------------------------------------------------------------------------------------------- . 1 | 3.1412407295336494743353 | 25888/11655*√2 . 2 | 3.1415952167705760328966 | 1863108608/838692855*√2 . 3 | 3.1415926338285612147454 | 2607005335552/1173564727335*√2 . 4 | 3.1415926537455103768956 | 86592236552192/38980201708305*√2 . 5 | 3.1415926535885530258848 | 42678860747884199936/19212237343166192325*√2 . 6 | 3.1415926535898031757455 | 1474308092195358988304384/663671815222966253879175*√2 . 7 | 3.1415926535897931585427 | 25754557013712857799386464256/11593623947422059715601253825*√2 . 8 | 3.1415926535897932391070 | 16248219196766078634894964031488/7314268425672804441304956579225*√2 . 9 | 3.1415926535897932384574 | 3482380024930917685304486445187072/1567621777752447501676104398875275*√2 .10 | 3.1415926535897932384627 | 897305682114824147754072834090261807104/403929473094228867300191362519982221425*√2 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)