Stoneham's series
|
06-14-2024, 05:42 PM
(This post was last modified: 06-17-2024 12:10 AM by Gerson W. Barbosa.)
Post: #19
|
|||
|
|||
RE: Stoneham's series
(06-12-2024 07:01 PM)Gerson W. Barbosa Wrote: . n |2√2*Product((4k)^2/((4k)^2 - 1),{k,1,n})*(1 + 2/(32n + 15 + ContinuedFractionK[((4k)^2-1)^2/((2k)^2-1),32n + 16,{k,1,n}])) This result is also a consequence of a connection of a series of Wallis-like products to the Viète's formula for \(\pi\), which I had never noticed before: \( \begin{align} \space\space\space\space \prod _{n=1}^{\infty}{\frac {(2^kn)^2}{(2^kn)^2-1}} \\ \\ &=\frac{\pi}{2} \space\space\space\space,\space k = 1 \\ \\ &=\frac{\pi}{2\sqrt{2}} \space\space\space\space,\space k = 2\\ \\ &=\frac{\pi}{4\sqrt{2-\sqrt{2}}} \space\space\space\space,\space k = 3\\ \\ &=\frac{\pi}{8\sqrt{2-\sqrt{2+\sqrt{2}}}} \space\space\space\space,\space k = 4\\ \\ &=\frac{\pi}{16\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}} \space\space\space\space,\space k = 5\\ \\ &\cdots \end{align} \) This HP-42S/Free42 program computes Viète's results for k=3 and above. The program uses the original version of Viètes's formula in order to avoid cancellation errors. The steps 22 through 45 are optional. That's just an experimental method for obtaining a few extra digits of \(\pi\), kept in the stack register Y at program exit. Code:
44 XEQ "VWπ" -> Y: 3.141592653589793238462643383279502 X: 3.141592653589793238462643366581728 ————— P. S.: This uses a better correction term for Viète's formula and works also for k=2: Code:
44 XEQ "VWπ" -> Y: 3.141592653589793238462643383279504 X: 3.141592653589793238462643366581725 On the HP-42S: 10 XEQ "VWπ" -> Y: 3.14159265358 X: 3.14158772527 ————— P. P. S.: Stack-only, k≥2: Code:
43 XEQ "VWπ" -> Y: 3.141592653589793238462643383279500 X: 3.141592653589793238462643316488386 On the HP-42S: 2 XEQ "VWπ" -> Y: 3.15140913388 X: 2.82842712476 3 XEQ "VWπ" -> Y: 3.14221296121 X: 3.06146745893 10 XEQ "VWπ" -> Y: 3.14159265358 X: 3.14158772527 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)