Viète à grande Vitesse or Accelerated Viète (kind of)
|
06-20-2024, 06:34 PM
(This post was last modified: 06-20-2024 09:21 PM by Albert Chan.)
Post: #15
|
|||
|
|||
RE: Viète à grande Vitesse or Accelerated Viète (kind of)
(06-18-2024 10:58 PM)Albert Chan Wrote:(06-18-2024 08:05 PM)Gerson W. Barbosa Wrote: Starting with Viète's formula With n cosines, cos denominator goes from 2^2 to 2^(n+1) If we have infinite cosinse, LHS is just 1 1 = c * cos(pi/2^(n+2)) * cos(pi/2^(n+3)) * cos(pi/2^(n+4)) ... // infinite cosines (06-04-2024 08:44 PM)Albert Chan Wrote: cos(pi*z/2) = (1-(z/1)²) * (1-(z/3)²) * (1-(z/5)²) * (1-(z/7)²) ... cos(pi*z/2^2) = (1-(z/1)²/4¹) * (1-(z/3)²/4¹) * (1-(z/5)²/4¹) * (1-(z/7)²/4¹) ... cos(pi*z/2^3) = (1-(z/1)²/4²) * (1-(z/3)²/4²) * (1-(z/5)²/4²) * (1-(z/7)²/4²) ... cos(pi*z/2^4) = (1-(z/1)²/4³) * (1-(z/3)²/4³) * (1-(z/5)²/4³) * (1-(z/7)²/4³) ... ... 1/4 + 1/4² + 1/4³ + ... = 1/4 / (1-1/4) = 1/3 Multiply all factors columnwise, ignore tiny z^4 or higher terms product(cos(pi*z/2^k, k=2 .. inf) ≈ (1-(z/√3/1)²) * (1-(z/√3/3)²) * (1-(z/√3/5)²) ... = cos(pi*z/2/√3) Let z = 1/2^n, we have: cos(pi/2^(n+2)) * cos(pi/2^(n+3)) * cos(pi/2^(n+4)) ... ≈ cos(pi/2^(n+1)/√3) cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ... → 1/cos(x) ≈ 1 + x^2/2, if x is small c = 1 + ε ≈ 1/cos(pi/2^(n+1)/√3) ≈ 1 + (pi/2^(n+1)/√3)^2 / 2 = 1 + (pi/2^(n+1))^2/6 QED |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)