median
|
09-14-2014, 06:34 AM
Post: #9
|
|||
|
|||
RE: median
Wikipedia (French) tells
"Pour une liste ordonnée de 2N éléments, toute valeur comprise entre l'élément N et l'élément N+1 est une médiane;" (evey value between element N and N+1 is a median if the list has 2N elements). Wikipedia (English) "If there is an even number of observations, then there is no single middle value; the median is then usually defined to be the mean of the two middle values", observe the word "usually". If you are using median to describe a statistical serie, using one definition or another is not important. Those who insist on the arithmetic mean definition are using medians for a different purpose, not related to statistics. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
median - Helge Gabert - 09-13-2014, 06:11 PM
RE: median - parisse - 09-13-2014, 06:44 PM
RE: median - Marcel - 09-13-2014, 08:25 PM
RE: median - Joe Horn - 09-14-2014, 04:21 AM
RE: median - Don Shepherd - 09-13-2014, 09:46 PM
RE: median - Chris Pem10 - 09-14-2014, 02:24 AM
RE: median - Tim Wessman - 09-14-2014, 03:41 AM
RE: median - Helge Gabert - 09-14-2014, 04:35 AM
RE: median - Joe Horn - 09-14-2014, 07:17 AM
RE: median - parisse - 09-14-2014 06:34 AM
RE: median - parisse - 09-14-2014, 09:37 AM
RE: median - Paul Dale - 09-14-2014, 09:51 AM
RE: median - parisse - 09-14-2014, 11:56 AM
RE: median - Thomas Radtke - 09-14-2014, 10:11 AM
|
User(s) browsing this thread: 1 Guest(s)