cubic solver
|
07-02-2024, 02:34 PM
Post: #6
|
|||
|
|||
RE: cubic solver
Here is solving cubic with trig identities
cos(3θ) = 4*cos(θ)^3 - 3*cos(θ) sin(3θ) = 3*sin(θ) - 4*sin(θ)^3 Or, to make formula with same pattern 4*cos(θ)^3 = 3*cos(θ) + cos(-3θ) 4*sin(θ)^3 = 3*sin(θ) + sin(-3θ) x^3 = a*x + b // let x = k*y k³*y³ = a*k*y + b // multiply both side by 4/k³, assuming k≠0 4*y³ = 4a/k²*y + 4b/k³ 4*y³ = 3*y + t // where k = √(4a/3), t = 4b/k³ This matched both trig identities. We just need to fix when k=0 (i.e. a=0) For cos version, replace sin/asin with cos/acos. Code: cubic_kt(a,b) := { a:=sqrt(4*a/3); return normal([a, b*4/a^3]) }; x^3 - 4*x^2 + 8*x - 8 = 0 // x = y + 4/3 y^3 = -8/3*y + 56/27 XCas> cubic_sin(-8/3, 56/27) .+ 4/3. [2.0, 1.0+1.73205080757*i, 1.0-1.73205080757*i] |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
cubic solver - Albert Chan - 09-08-2023, 02:26 PM
RE: cubic solver - Albert Chan - 09-08-2023, 02:44 PM
RE: cubic solver - parisse - 09-08-2023, 06:56 PM
RE: cubic solver - Albert Chan - 06-29-2024, 02:46 PM
RE: cubic solver - Albert Chan - 06-29-2024, 03:29 PM
RE: cubic solver - Albert Chan - 07-02-2024 02:34 PM
RE: cubic solver - Albert Chan - 07-02-2024, 05:12 PM
RE: cubic solver - Albert Chan - 07-03-2024, 10:17 PM
RE: cubic solver - Albert Chan - 07-03-2024, 11:48 PM
Quarter Solver - Albert Chan - 07-04-2024, 08:37 PM
|
User(s) browsing this thread: 10 Guest(s)