cubic solver
|
07-02-2024, 05:12 PM
Post: #7
|
|||
|
|||
RE: cubic solver
(07-02-2024 02:34 PM)Albert Chan Wrote: For cos version, replace sin/asin with cos/acos. For numerical calculations, sin version perhaps is better. (is there exceptions?) But there is a use for cosine, if we want to get real (α, β) from real (k, t) cos(real or purely imaginary) = real y^3 = a*y+b, k = √(4a/3), t = 4b/k³, θ = acos(t)/3 y = k* cos(2n/3*pi - θ) = k*(cos(2n/3*pi)*cos(θ) + sin(2n/3*pi)*sin(θ)) = [cos(2n/3*pi), i*sin(2n/3*pi)] • [k*cos(θ), k*sin(θ)/i] Compare this to radical (α, β) version y = cis(2m/3*pi) * α + cis(-2m/3*pi) * β = [cos(2m/3*pi), i*sin(2m/3*pi)] • [α+β, α−β] Assuming m=n (it doesn't matter if they are not the same), we have: α+β = k*cos(θ) α−β = -i*k*sin(θ) 2α = (α+β) + (α−β) = k*cis(-θ) 2β = (α+β) − (α−β) = k*cis(θ) LHS = one of RHS pairs. (we don't know if m=n, or sort order of (α, β)) k/2*cis(±acos(t)/3) = {α, β} | {α*ω, β/ω} |{α/ω, β*ω} | {β, α} | {β*ω, α/ω} | {β/ω, α*ω} Example, x^3 = x + 1 XCas> a, b := cubic_ab(1.,1.) → [0.337726750973, 0.986991206271] XCas> k, t := cubic_kt(1.,1.) → [1.15470053838, 2.59807621135] XCas> θ := acos(t)/3 → 0.536211995193*i XCas> k/2 * [cis(θ), cis(-θ)] → [0.337726750973, 0.986991206271] |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
cubic solver - Albert Chan - 09-08-2023, 02:26 PM
RE: cubic solver - Albert Chan - 09-08-2023, 02:44 PM
RE: cubic solver - parisse - 09-08-2023, 06:56 PM
RE: cubic solver - Albert Chan - 06-29-2024, 02:46 PM
RE: cubic solver - Albert Chan - 06-29-2024, 03:29 PM
RE: cubic solver - Albert Chan - 07-02-2024, 02:34 PM
RE: cubic solver - Albert Chan - 07-02-2024 05:12 PM
RE: cubic solver - Albert Chan - 07-03-2024, 10:17 PM
RE: cubic solver - Albert Chan - 07-03-2024, 11:48 PM
Quarter Solver - Albert Chan - 07-04-2024, 08:37 PM
|
User(s) browsing this thread: 9 Guest(s)