Post Reply 
Lagrangian Interpolation
07-12-2024, 08:28 AM
Post: #28
RE: Lagrangian Interpolation
(03-14-2019 07:58 PM)Thomas Klemm Wrote:  Given the restrictions of the HP-25 I'm afraid we can't go further than 3 points.

(07-09-2024 08:43 PM)Albert Chan Wrote:  Yes, you can!

Here we go:
Code:
01: 24 00    : RCL 0
02: 41       : -
03: 23 06    : STO 6
04: 24 04    : RCL 4
05: 41       : -
06: 24 07    : RCL 7
07: 61       : *
08: 24 05    : RCL 5
09: 51       : +
10: 24 06    : RCL 6
11: 24 02    : RCL 2
12: 41       : -
13: 61       : *
14: 24 03    : RCL 3
15: 51       : +
16: 24 06    : RCL 6
17: 61       : *
18: 24 01    : RCL 1
19: 51       : +
20: 13 00    : GTO 00
21: 24 00    : RCL 0
22: 23 41 02 : STO - 2
23: 23 41 04 : STO - 4
24: 23 41 06 : STO - 6
25: 24 01    : RCL 1
26: 23 41 03 : STO - 3
27: 23 41 05 : STO - 5
28: 23 41 07 : STO - 7
29: 24 04    : RCL 4
30: 23 71 05 : STO / 5
31: 24 06    : RCL 6
32: 23 71 07 : STO / 7
33: 24 02    : RCL 2
34: 23 71 03 : STO / 3
35: 24 03    : RCL 3
36: 23 41 05 : STO - 5
37: 23 41 07 : STO - 7
38: 22       : Rv
39: 41       : -
40: 23 71 07 : STO / 7
41: 21       : x<->y
42: 14 73    : f LASTx
43: 41       : -
44: 23 71 05 : STO / 5
45: 24 05    : RCL 5
46: 23 41 07 : STO - 7
47: 22       : Rv
48: 41       : -
49: 23 71 07 : STO / 7

Example

Interpolation of the \(sin\) function using well known values:

\(
\begin{align}
(30&, 0.5) \\
(45&, \sqrt{0.5}) \\
(60&, \sqrt{0.75}) \\
(90&, 1) \\
\end{align}
\)

Enter the data

30 STO 0
.5 STO 1

45 STO 2
.5 \(\sqrt{x}\) STO 3

60 STO 4
.75 \(\sqrt{x}\) STO 5

90 STO 5
1 STO 6

Calculation of coefficients

GTO 21
R/S

Interpolation of values

37 R/S
0.6020

37 sin
0.6018

49 R/S
0.7546

49 sin
0.7547

73 R/S
0.9572

73 sin
0.9563
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Lagrangian Interpolation - Namir - 12-18-2013, 06:04 AM
RE: Lagrangian Interpolation - bshoring - 03-05-2015, 05:17 AM
RE: Lagrangian Interpolation - PedroLeiva - 03-05-2015, 09:33 PM
RE: Lagrangian Interpolation - bshoring - 03-07-2015, 11:49 PM
RE: Lagrangian Interpolation - PedroLeiva - 03-09-2015, 03:37 AM
RE: Lagrangian Interpolation - bshoring - 03-09-2015, 03:30 AM
RE: Lagrangian Interpolation - bshoring - 03-09-2015, 09:50 PM
RE: Lagrangian Interpolation - bshoring - 03-13-2015, 05:33 AM
RE: Lagrangian Interpolation - PedroLeiva - 03-14-2019, 03:55 PM
RE: Lagrangian Interpolation - PedroLeiva - 03-14-2019, 07:22 PM
RE: Lagrangian Interpolation - Albert Chan - 07-09-2024, 08:43 PM
RE: Lagrangian Interpolation - PedroLeiva - 03-14-2019, 08:12 PM
RE: Lagrangian Interpolation - PedroLeiva - 07-09-2024, 12:58 PM
RE: Lagrangian Interpolation - Albert Chan - 07-10-2024, 11:23 AM
RE: Lagrangian Interpolation - rprosperi - 07-10-2024, 11:34 AM
RE: Lagrangian Interpolation - Albert Chan - 07-11-2024, 10:05 AM
RE: Lagrangian Interpolation - Thomas Klemm - 07-12-2024 08:28 AM



User(s) browsing this thread: 1 Guest(s)