Gamma function
|
08-16-2024, 08:42 PM
(This post was last modified: 08-16-2024 10:53 PM by ftneek.)
Post: #8
|
|||
|
|||
RE: Gamma function
With normalize(ex)) in g3, symbolic result is different:
g3(Gamma(x)) -> (x-1)!/ABS((x-1)!) (08-16-2024 08:04 PM)Albert Chan Wrote: Cas> Gamma2(a) := piecewise((len(a)==2 AND a[2]==0),Gamma(a[1]), (len(a)==2 AND a[2]==inf),0, Gamma(a)) I tried this updated Gamma2 method, it incorrectly applied Gamma(Gamma(x)) Gamma2(Gamma(x)) -> ((x-1)!-1)! It should have just returned Gamma(x)=(x-1)! fix is for the last piecewise statement: Quote:Gamma2(a) := piecewise((len(a)==2 AND a[2]==0),Gamma(a[1]), (len(a)==2 AND a[2]==inf),0, a); Gamma2(Gamma(x)) -> (x-1)! g3(laplace(t^(-1/3),t,s) -> s^(1/3)*Gamma(2/3)/s No need to normalize g3, and Gamma2 can handle symbolic gamma expression. Edit: I may have misunderstood because of the optional argument. The arguments are Gamma2(a,[b]). Without b, Gamma(a) is expected. So Gamma(Gamma(x)) is correct, and my change to the last piecewise statement is not necessary (or correct). - neek |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Gamma function - robmio - 08-06-2020, 01:56 PM
RE: Gamma function - robmio - 08-06-2020, 03:49 PM
RE: Gamma function - robmio - 08-06-2020, 06:14 PM
RE: Gamma function - ftneek - 08-16-2024, 09:36 AM
RE: Gamma function - Albert Chan - 08-16-2024, 11:47 AM
RE: Gamma function - ftneek - 08-16-2024, 06:06 PM
RE: Gamma function - Albert Chan - 08-16-2024, 08:04 PM
RE: Gamma function - ftneek - 08-16-2024 08:42 PM
RE: Gamma function - Albert Chan - 08-16-2024, 11:46 PM
|
User(s) browsing this thread: 1 Guest(s)