Post Reply 
HP 15C CE integration
09-21-2024, 04:28 PM
Post: #6
RE: HP 15C CE integration
Bisecting to illustrate the effect of smaller intervals for this function, this time with Python sympy:
Code:
>>> from sympy import init_printing, Symbol, exp, integrate
>>> init_printing()
>>> x = Symbol("x")
>>> f = exp(-(x**2))
>>> integrate(f, (x, 3, 65)).n()
1.95771932367798e-5
>>> integrate(f, (x, 3, 32)).n()
1.95771932367798e-5
>>> integrate(f, (x, 3, 16)).n()
1.95771932367798e-5
>>> integrate(f, (x, 3, 8)).n()
1.95771932367798e-5
>>>

On the HP 15C CE, with [3, 8] even FIX 4 returned a reasonable solution (1.9458e-05). But I'll remember to use SCI when integrating.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP 15C CE integration - Idnarn - 09-20-2024, 04:08 PM
RE: HP 15C CE integration - Gene - 09-20-2024, 08:10 PM
RE: HP 15C CE integration - Idnarn - 09-21-2024, 04:08 AM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 12:33 PM
RE: HP 15C CE integration - Johnh - 09-20-2024, 11:37 PM
RE: HP 15C CE integration - Idnarn - 09-21-2024 04:28 PM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 04:45 PM
RE: HP 15C CE integration - carey - 09-21-2024, 06:15 PM
RE: HP 15C CE integration - Albert Chan - 09-22-2024, 03:49 PM
RE: HP 15C CE integration - AnnoyedOne - 09-23-2024, 12:29 PM
RE: HP 15C CE integration - Thomas Klemm - 09-21-2024, 05:42 PM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 05:46 PM



User(s) browsing this thread: 1 Guest(s)