HP 15C CE integration
|
09-22-2024, 03:49 PM
Post: #11
|
|||
|
|||
RE: HP 15C CE integration
(09-21-2024 06:15 PM)carey Wrote: Since \(\text{erf(65)} \approx 1 \) and \(\text{erf(3)} \approx 0.99997791 \), the integral becomes: Perhaps it is better to skip subtraction, to avoid cancellation errors. We may also use normal distribution functions. Many scientific calculators had them, under statistics. lua> x = 3 lua> sqrt(pi)/2 * erfc(x) 1.9577193236779756e-05 lua> sqrt(pi) * cdf(-sqrt(2)*x) 1.95771932367797e-05 65 treated as ∞, because ∫(e^(-t^2), t=65 .. ∞) ≈ e^(-65^2)/(2*65) ≈ 10^(-1837) see A Continued Fraction for Error Function by Ramanujan, equation 3 Instead of treating upper limit as ∞, we may do opposite, make it as small as possible. e^(-3^2)/(2*3) ≈ 2e-5 e^(-6^2)/(2*6) ≈ 2e-17 For 12 digits accuracy, integrate from 3 to 6 suffice. >integ(3,6,1e-10,exp(-ix*ix)) 1.95771932367E-5 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP 15C CE integration - Idnarn - 09-20-2024, 04:08 PM
RE: HP 15C CE integration - Gene - 09-20-2024, 08:10 PM
RE: HP 15C CE integration - Idnarn - 09-21-2024, 04:08 AM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 12:33 PM
RE: HP 15C CE integration - Johnh - 09-20-2024, 11:37 PM
RE: HP 15C CE integration - Idnarn - 09-21-2024, 04:28 PM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 04:45 PM
RE: HP 15C CE integration - carey - 09-21-2024, 06:15 PM
RE: HP 15C CE integration - Albert Chan - 09-22-2024 03:49 PM
RE: HP 15C CE integration - AnnoyedOne - 09-23-2024, 12:29 PM
RE: HP 15C CE integration - Thomas Klemm - 09-21-2024, 05:42 PM
RE: HP 15C CE integration - AnnoyedOne - 09-21-2024, 05:46 PM
|
User(s) browsing this thread: 2 Guest(s)