DM 41X: Doble integral using different modules fails
|
10-01-2024, 07:33 PM
(This post was last modified: 10-02-2024 11:52 PM by Albert Chan.)
Post: #6
|
|||
|
|||
RE: DM 41X: Doble integral using different modules fails
(09-29-2024 08:08 PM)rawi Wrote: I tested the evaluation of the double integral of the following function: I was curious if there is a way to avoid double integral, and still get a good estimate. For x=0..1, y=0..1 --> Denominator k = y^2+y*x+1 = 1..3 Assume k is just a constant. This reduced ∫∫ to ∫ ∫(e^(-x^2/k), x=0..1) = √k * ∫e^(-t^2), t=0 .. 1/√k) = √(k*pi)/2 * erf(1/√k) = √(k*pi) * cdf(0 .. √(2/k)) I = ∫(e^(-x²/k), x=0..1) = √(2*pi) * cdf(0 .. z)/z , where z = √(2/k) Mean denominator = ∫∫(y²+y*x+1), x=0..1, y=0..1) = (∫(y²+1), y=0..1) + (∫x, x=0..1)*(∫y, y=0..1) = (1/3 + 1) + 1/2*1/2 = 19/12 z = √(2/k) = √(24/19) = 1.1239 Since this is only rough estimate, I don't bother with interpolation. We just look up from statistic book, cdf(0 .. z) where z = 1.12 and 1.13 I(z=1.12) = 2.5066 * 0.3686 / 1.12 = 0.8249 I(z=1.13) = 2.5066 * 0.3708 / 1.13 = 0.8225 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
DM 41X: Doble integral using different modules fails - rawi - 09-29-2024, 08:08 PM
RE: DM 41X: Doble integral using different modules fails - Thomas Klemm - 09-29-2024, 10:14 PM
RE: DM 41X: Doble integral using different modules fails - rawi - 09-30-2024, 07:53 AM
RE: DM 41X: Doble integral using different modules fails - Thomas Klemm - 09-30-2024, 10:51 AM
RE: DM 41X: Doble integral using different modules fails - rawi - 09-30-2024, 04:16 PM
RE: DM 41X: Doble integral using different modules fails - Albert Chan - 10-01-2024 07:33 PM
|
User(s) browsing this thread: 1 Guest(s)