What comes next?
|
10-11-2024, 03:12 AM
(This post was last modified: 10-11-2024 03:16 AM by Thomas Klemm.)
Post: #9
|
|||
|
|||
RE: What comes next?
(10-10-2024 09:17 PM)Gil Wrote: Interesting, but I do not understand where the Matrix in your example comes from. Just write the sequence A131689 downwards as an infinite triangular matrix: \( \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ & 1 & 1 & 1 & 1 & 1 & 1 & 1 &\cdots \\ & & 2 & 6 & 14 & 30 & 62 & 126 & \cdots \\ & & & 6 & 36 & 150 & 540 & 1806 & \cdots \\ & & & & 24 & 240 & 1560 & 8400 & \cdots \\ & & & & & 120 & 1800 & 16800 & \cdots \\ & & & & & & 720 & 15120 & \cdots \\ & & & & & & & 5040 & \cdots \\ & & & & & & & & \cdots \\ \end{bmatrix} \) There is a relative simple formula: \(T(n,k) = k \cdot \left(T(n-1,k-1) + T(n-1,k)\right)\) with \(T(0,0)=1\). Examples \( \begin{align} 30 &= 2 \cdot (1 + 14) \\ 1806 & = 3 \cdot (62 + 540) \\ 8400 & = 4 \cdot (540 + 1560) \\ \end{align} \) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)