What comes next?
|
10-15-2024, 01:34 PM
(This post was last modified: 10-15-2024 01:57 PM by Gil.)
Post: #20
|
|||
|
|||
RE: What comes next?
Thanks for sharing this very compact code to get the coefficients list {c0 x1 c2...}.
Nice ideas yours : the while routine, the use of GDLIST (that I created) and the HEAD command (instead of 1 GET). I don't use the NEG command in your last code, building simply the polynomial P(x)= c0×COMB(x 0) + c1×COMB(x 1) + c2×COMB(x 2) +... , as I understood from the Mathologer video. My next question is if I may ask: what is the code algorithm you used in your first post to get the binomial coefficient ? I know of course how to calculate them, but I don't understand where you calculate them in post 1, as the given code there seems to be compact. Did you use a special algorithm to have it coded in such a compact manner? Last question, what will you get in your calculator or l'émulation for the next number of the following list? { 17 72 97 8 32 15 63 97 57 60 83 48 26 12 62 3 49 55 77 97 98 0 89 57 34 92 29 75 13 40 3 2 3 83 69 1 48 87 27 54 92 3 67 28 97 56 63 } My outputs are the following on my HP50G (EMU48 on the phone): f(x): '79452528137/73368295464161185998004072384003398572822023372800000000*x^46-62405430595537/34177777390137198446275188998759347161252495360000000000*x^45+6867032884106951/5316543149576897536087251622029231780639277056000000000*x^44-34545108562396661/63042013631346611099848833462797214790189056000000000*x^43+106691370557962873/661179349530767011079125932350358385852416000000000*x^42-923169570689950723/25870912096109496367220670975808100106240000000000*x^41+5116625404961330065763/822442605513880916220376159752884821426176000000000*x^40-311468829373514971297883/352475402363091821237304068465522066325504000000000*x^39+275943260466345773653043/2636033992031669603270436409464374427648000000000*x^38-87608265026221671791006869/8324317869573693484011904450940129771520000000000*x^37+30029516324945094481863139/32997296059571397594281423048771685580800000000*x^36-4836221201668622333612196203/70708491556224423416317335104510754816000000000*x^35+28988215264507981444327043789639/6434472731616422530884877494510478688256000000000*x^34-839345543093035778449860512219/3205802337471230543171792686672773120000000000*x^33+51607086362411670830498783733509/3823216120984208277412286092994936832000000000*x^32-790243016479486246527834493165571/1274405373661402759137428697664978944000000000*x^31+106811524891100735742511752268222691/4193204777853647788129604101994446848000000000*x^30-8431800252037961299841608135968849877/8985438809686388117420580218559528960000000000*x^29+768253566843264232556162245809725666423/24725448862516336957591803497967255552000000000*x^28-1963166711585595025861899594374007832651/2119324188215686024936440299825764761600000000*x^27+2042562341192591298725383283799475884961/82045230011366427310259378122968268800000000*x^26-63148633232678459156494019054764776365418851/104607668264492194820580707106784542720000000000*x^25+2119197122349584396453753374358695387711789651/160398424672221365391557084230402965504000000000*x^24-17858444764609635577090499051547310644173/68423124970642479286895385772032000000000*x^23+57512583175457211563551536571999027424387232007/12362724431258168478795901748983627776000000000*x^22-43054411737196706236305010020807767010248926001/575903312015132071993597907561349120000000000*x^21+1114637639846174402229811815888516792729194246171/1030227035938180706566325145748635648000000000*x^20-572545195255310504916372668049778639167342175967/40666856681770291048670729437446144000000000*x^19+16157009866931314887284727143180289175362272256437/98278236980944870034287596140494848000000000*x^18-1252209966295262840527254340195582349765162487367/728706650872057859868667297136640000000000*x^17+4739926115057342684077714276442279198720541863850271/295701871857372358956106502505077145600000000*x^16-168492124329437939303112790767488353520865947410307863/1267293736531595824097599296450330624000000000*x^15+209737683279937115240221689503251905819425068750689473/214826146221167953087769681307107328000000000*x^14-924867262101770565596196284887085917299220361455178393/146472372423523604378024782709391360000000000*x^13+2154564484560501309213144649107615993811498231839781/60276696470585845423055466135552000000000*x^12-111065175127946654779403925649034914832194926918919/631782144683935491623640367104000000000*x^11+3015177814587748482228052146102580881633138423086659489/4050505360622676774421352242741248000000000*x^10-14144171311503183171149392051950453414030477549299293597/5269790137544809068762473581117440000000000*x^9+121454897150071857638148801317004578091817898013556907/14943270644658312752856551242752000000000*x^8-728465154287934961017826027803007940038213284428022953/35863849547179950606855722982604800000000*x^7+817578382344087596732311591896347700161404311307203053/19968637217010071263817198845870080000000*x^6-4359514147282944414325206668958078534305004412820119/67563058253041594501637138952192000000*x^5+92518532187382044338021044151838672053095671664831/1216909580968584274864143353702400000*x^4-49357091850914086397470724236043481620906093159/790201026602976801859833346560000*x^3+132720057639127275173051837261789837516351/4202885913130495995387984000*x^2-6869689147511982724488320657561/941958815880242160*x+17' f(47): -313323742215540 Thanks in advance for your collaboration, Thomas. Regards, Gil |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)