Pandigital RPL algebraic pi approximation
|
10-18-2024, 05:17 PM
(This post was last modified: 10-18-2024 05:19 PM by Gerson W. Barbosa.)
Post: #9
|
|||
|
|||
RE: Pandigital RPL algebraic pi approximation
(10-16-2024 01:51 PM)EdS2 Wrote: wow that's a lot of digits of correct approximation! well done! Thanks, Ed! Yes, nineteen correct digits from the nine significant digits in this more conventional equivalent expression: \(2\sqrt{\ln\left({10+\frac{3\times32^2}{200^4-75^2}+\ln\left({6}\right)}\right)}\) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Pandigital RPL algebraic pi approximation - Gerson W. Barbosa - 10-16-2024, 03:41 AM
RE: Pandigital RPL algebraic pi approximation - Gerson W. Barbosa - 10-16-2024, 11:43 AM
RE: Pandigital RPL algebraic pi approximation - EdS2 - 10-16-2024, 01:51 PM
RE: Pandigital RPL algebraic pi approximation - Gerson W. Barbosa - 10-18-2024 05:17 PM
RE: Pandigital RPL algebraic pi approximation - naddy - 10-16-2024, 02:20 PM
RE: Pandigital RPL algebraic pi approximation - Maximilian Hohmann - 10-16-2024, 02:32 PM
RE: Pandigital RPL algebraic pi approximation - AnnoyedOne - 10-16-2024, 04:12 PM
RE: Pandigital RPL algebraic pi approximation - Gerson W. Barbosa - 10-16-2024, 04:14 PM
RE: Pandigital RPL algebraic pi approximation - klesl - 10-16-2024, 03:51 PM
RE: Pandigital RPL algebraic pi approximation - KeithB - 10-18-2024, 05:39 PM
|
User(s) browsing this thread: 1 Guest(s)