1 + 2 + 3 + ... = -1/12
|
10-27-2024, 06:09 PM
(This post was last modified: 10-28-2024 02:11 AM by Albert Chan.)
Post: #35
|
|||
|
|||
RE: 1 + 2 + 3 + ... = -1/12
(10-27-2024 12:36 PM)AnnoyedOne Wrote: "1 + 2 + 3 +... = -1/12" We just ASSIGN a finite value to this divergent sum. Weird sum will get cancelled at the end of calculations. We could even leave it un-evaluated as zeta(-1), but a number as place-holder is simpler. F(n) = sum(k, k=n, inf) = zeta(-1) - sum(k, k=1..n-1) = zeta(-1) - n*(n-1)/2 sum(k, k=10..25) = F(10) - F(26) = (zeta(-1)-10*9/2) - (zeta(-1)-26*25/2) = 280 (08-19-2019 04:15 PM)Albert Chan Wrote: Let \(t = \frac{a}{1-a}\), then \(T= \sum_{x=1}^{\infty} a^x u_x = t \{1 + (tΔ) + (tΔ)^2 + \cdots\}u_1 \) We assign t = Σ(a^x, x=1..inf) = a/(1-a), even if |a|>1 Below example had a=2 --> t = 2/(1-2) = -2, which make no sense. But, infinite placeholder will get cancelled, when we ask for finite sum. (*) (08-19-2019 04:15 PM)Albert Chan Wrote: (*) 'infinite' formula was derived from finite sum, but a/(1-a) keep popping out. It just happened that t = a/(1-a) = sum(a^x, x=1..inf) Infinite placeholder did not really get cancelled, but it is OK sum(a^x * ux, x, m, n-1) = -a^(x-1) * t * {1 + (tΔ) + (tΔ)^2 + ...} ux | x = m .. n sum(2^x * x^2, x, 10, 26-1) = preval(-2^(x-1) * t * (x^2 + (2x+1)*t + 2*t^2), 10, 26) = 38788923392 - 67584 = 38788855808 More compact formula, for u in falling factorial form: \(\displaystyle \sum_{x=0}^{\infty} a^{x+1} \, x^\underline{n} = n! \, t^{n+1} \quad \text{, where } t = \frac{a}{1-a}\) \(\sum _{10}^{\infty} 2^x x^2 = 2^9 \sum _{0}^{\infty} 2^{x+1} (x+10)^2 = 2^9 \sum _{0}^{\infty} 2^{x+1} (x^\underline{2} + 21x + 10^2) → 2^9 \,t\, (2t^2 + 21t + 10^2) = -67584\) \(\sum _{26}^{\infty} 2^x x^2 = 2^{25} \sum _{0}^{\infty} 2^{x+1} (x+26)^2 = 2^{25} \sum _{0}^{\infty} 2^{x+1} (x^\underline{2} + 53x + 26^2) → 2^{25} \,t\, (2 t^2 + 53t + 26^2) = -38788923392\) Update equivalent formula, with r = 1/t = (1-a)/a = 1/a - 1 \(\displaystyle \sum_{x=0}^{\infty} \frac{x^\underline{n}}{(r+1)^{x+1}} = \frac{n!}{r^{n+1} } \) |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)