Post Reply 
1 + 2 + 3 + ... = -1/12
10-27-2024, 06:09 PM (This post was last modified: 10-28-2024 02:11 AM by Albert Chan.)
Post: #35
RE: 1 + 2 + 3 + ... = -1/12
(10-27-2024 12:36 PM)AnnoyedOne Wrote:  "1 + 2 + 3 +... = -1/12"
Really? Is that so? And you can "prove" it? Actually I'm pretty sure that you can't.

We just ASSIGN a finite value to this divergent sum.
Weird sum will get cancelled at the end of calculations.

We could even leave it un-evaluated as zeta(-1), but a number as place-holder is simpler.

F(n) = sum(k, k=n, inf) = zeta(-1) - sum(k, k=1..n-1) = zeta(-1) - n*(n-1)/2

sum(k, k=10..25) = F(10) - F(26) = (zeta(-1)-10*9/2) - (zeta(-1)-26*25/2) = 280

(08-19-2019 04:15 PM)Albert Chan Wrote:  Let \(t = \frac{a}{1-a}\), then \(T= \sum_{x=1}^{\infty} a^x u_x = t \{1 + (tΔ) + (tΔ)^2 + \cdots\}u_1 \)

We assign t = Σ(a^x, x=1..inf) = a/(1-a), even if |a|>1

Below example had a=2 --> t = 2/(1-2) = -2, which make no sense.
But, infinite placeholder will get cancelled, when we ask for finite sum. (*)

(08-19-2019 04:15 PM)Albert Chan Wrote:  
Code:
x  x^2 Forward Difference Table
10 100
11 121 21
12 144 23 2

26 676
27 729 53
28 784 55 2

\(\sum _{10}^{\infty} 2^x x^2 = 2^9 \sum _{1}^{\infty} 2^x (x+9)^2 → 2^9 (100t + 21t^2 +2 t^3) → -67584\)

\(\sum _{26}^{\infty} 2^x x^2 = 2^{25} \sum _{1}^{\infty} 2^x (x+25)^2 → 2^{25} (676t + 53t^2 +2 t^3) → -38788923392\)

\(\sum _{10}^{25} 2^x x^2 = \sum _{10}^{\infty} 2^x x^2 - \sum _{26}^{\infty} 2^x x^2 → 38788855808\)

Amazingly, it match true result

(*) 'infinite' formula was derived from finite sum, but a/(1-a) keep popping out.
It just happened that t = a/(1-a) = sum(a^x, x=1..inf)
Infinite placeholder did not really get cancelled, but it is OK

sum(a^x * ux, x, m, n-1) = -a^(x-1) * t * {1 + (tΔ) + (tΔ)^2 + ...} ux | x = m .. n

sum(2^x * x^2, x, 10, 26-1)
= preval(-2^(x-1) * t * (x^2 + (2x+1)*t + 2*t^2), 10, 26)
= 38788923392 - 67584
= 38788855808



More compact formula, for u in falling factorial form:

\(\displaystyle
\sum_{x=0}^{\infty} a^{x+1} \, x^\underline{n} = n! \, t^{n+1}
\quad \text{, where } t = \frac{a}{1-a}\)

\(\sum _{10}^{\infty} 2^x x^2
= 2^9 \sum _{0}^{\infty} 2^{x+1} (x+10)^2
= 2^9 \sum _{0}^{\infty} 2^{x+1} (x^\underline{2} + 21x + 10^2)
→ 2^9 \,t\, (2t^2 + 21t + 10^2)
= -67584\)

\(\sum _{26}^{\infty} 2^x x^2
= 2^{25} \sum _{0}^{\infty} 2^{x+1} (x+26)^2
= 2^{25} \sum _{0}^{\infty} 2^{x+1} (x^\underline{2} + 53x + 26^2)
→ 2^{25} \,t\, (2 t^2 + 53t + 26^2)
= -38788923392\)

Update equivalent formula, with r = 1/t = (1-a)/a = 1/a - 1

\(\displaystyle
\sum_{x=0}^{\infty} \frac{x^\underline{n}}{(r+1)^{x+1}}
= \frac{n!}{r^{n+1} }
\)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-01-2018, 08:26 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-01-2018, 09:09 PM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-01-2018, 09:25 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-01-2018, 11:34 PM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-01-2018, 11:56 PM
RE: 1 + 2 + 3 + ... = -1/12 - floppy - 10-27-2024, 04:50 PM
RE: 1 + 2 + 3 + ... = -1/12 - Johnh - 10-27-2024, 08:32 PM
RE: 1 + 2 + 3 + ... = -1/12 - pier4r - 10-03-2018, 03:42 PM
RE: 1 + 2 + 3 + ... = -1/12 - pier4r - 10-03-2018, 05:13 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Okken - 10-03-2018, 06:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-03-2018, 11:13 AM
RE: 1 + 2 + 3 + ... = -1/12 - dm319 - 10-27-2024, 10:29 AM
RE: 1 + 2 + 3 + ... = -1/12 - mfleming - 10-04-2018, 01:38 AM
RE: 1 + 2 + 3 + ... = -1/12 - SlideRule - 10-04-2018, 11:48 AM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 08-19-2019, 04:15 PM
RE: 1 + 2 + 3 + ... = -1/12 - toml_12953 - 08-19-2019, 05:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - ijabbott - 08-19-2019, 07:17 PM
RE: 1 + 2 + 3 + ... = -1/12 - jebem - 08-20-2019, 04:03 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-26-2024, 06:02 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-26-2024, 06:27 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-26-2024, 09:05 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 12:36 PM
RE: 1 + 2 + 3 + ... = -1/12 - Nigel (UK) - 10-27-2024, 04:17 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 04:35 PM
RE: 1 + 2 + 3 + ... = -1/12 - AnnoyedOne - 10-27-2024, 05:15 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024, 05:22 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024 06:09 PM
RE: 1 + 2 + 3 + ... = -1/12 - carey - 10-27-2024, 09:55 PM
RE: 1 + 2 + 3 + ... = -1/12 - Johnh - 10-26-2024, 11:08 PM
RE: 1 + 2 + 3 + ... = -1/12 - Albert Chan - 10-27-2024, 12:06 AM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-27-2024, 03:34 AM
RE: 1 + 2 + 3 + ... = -1/12 - Namir - 10-27-2024, 12:04 PM
RE: 1 + 2 + 3 + ... = -1/12 - Thomas Klemm - 10-27-2024, 12:19 PM



User(s) browsing this thread: 2 Guest(s)