Post Reply 
(HP71B) Newton's method
11-13-2024, 01:12 PM (This post was last modified: 11-13-2024 08:21 PM by Albert Chan.)
Post: #6
RE: (HP71B) Newton's method
A better way to reduce function calls is to straighten curve.
From previous post, e^x - 3x^2 = 0. Divide both side by e^x

>2 DEF FNF(X)= 1 - 3*X^2/EXP(X)

Code:
Guess, Accuracy = 3, 1e-6
 3.76823887888       -.768238878882        2
 3.73298203526        3.52568436176E-2     4
 3.73307902863       -9.69933705838E-5     7
 3.73307902863        0                    10

Code:
Guess, Accuracy = 4, 1e-6
 3.7252587096         .274741290395        2
 3.73307492918       -7.81621958153E-3     4
 3.73307902863       -4.09945495303E-6     7
 3.73307902863        0                    10
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(HP71B) Newton's method - Albert Chan - 10-01-2023, 03:59 PM
RE: (HP71B) Newton's method - Albert Chan - 10-01-2023, 04:34 PM
RE: (HP71B) Newton's method - Albert Chan - 10-01-2023, 09:47 PM
RE: (HP71B) Newton's method - Albert Chan - 10-02-2023, 04:04 PM
RE: (HP71B) Newton's method - Albert Chan - 11-12-2024, 12:12 PM
RE: (HP71B) Newton's method - Albert Chan - 11-13-2024 01:12 PM
RE: (HP71B) Newton's method - Albert Chan - 11-13-2024, 08:38 PM
RE: (HP71B) Newton's method - Albert Chan - 11-18-2024, 01:22 PM
RE: (HP71B) Newton's method - Albert Chan - 11-21-2024, 12:08 AM



User(s) browsing this thread: 1 Guest(s)