Post Reply 
Yet another π formula
11-24-2024, 01:59 PM
Post: #18
RE: Yet another π formula
(01-04-2021 08:41 PM)Gerson W. Barbosa Wrote:  The alternate sum of the factors of the Wallis product tends to \(\pi\)/4 - 1/2 as \(n\) tends to infinity:

\(\lim_{n\rightarrow \infty } \left [ \frac{1}{1\cdot 3}-\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}-\frac{1}{7\cdot 9}+\frac{1}{9\cdot 11}-\frac{1}{11\cdot 13}+\frac{1}{13\cdot 15}-\frac{1}{15 \cdot 17}\pm \cdots +\frac{(-1)^{n-1}}{4n^{2}-1}\right ]=\frac{\pi }{4}-\frac{1}{2}\)

We can use Valtentin's program (11C) Summation of infinite, alternating series and adapt it for the HP-15C:
Code:
   001 { 42 21 11 } f LBL A
   002 { 43  5  0 } g CF 0
   003 {    44 .1 } STO 11
   004 {       34 } X<=>Y
   005 {    44 .0 } STO 10
   006 {        1 } 1
   007 {    44  8 } STO 8
   008 {        0 } 0
   009 {    44  9 } STO 9
   010 {    44 25 } STO I
   011 { 42 21  1 } f LBL 1
   012 {    32 12 } GSB B
   013 {    45  8 } RCL 8
   014 { 44 30  8 } STO - 8
   015 { 44 30  8 } STO - 8
   016 {       20 } *
   017 { 44 40  9 } STO + 9
   018 { 42  6 25 } f ISG I
   019 { 42  7  4 } f FIX 4
   020 {    45 .0 } RCL 10
   021 {    45 25 } RCL I
   022 {    43 10 } g x<=y
   023 {    22  1 } GTO 1
   024 {    44  8 } STO 8
   025 {        2 } 2
   026 {       10 } /
   027 {    42 44 } f FRAC
   028 { 43 30  0 } g TEST 0
   029 { 43  4  0 } g SF 0
   030 {    43 35 } g CLx
   031 {    44 25 } STO I
   032 { 42 21  2 } f LBL 2
   033 {    45  8 } RCL 8
   034 {    32 12 } GSB B
   035 {    44 24 } STO (i)
   036 { 42  6 25 } f ISG I
   037 { 42  7  4 } f FIX 4
   038 {        1 } 1
   039 { 44 40  8 } STO + 8
   040 {    45 .1 } RCL 11
   041 {    45 25 } RCL I
   042 {    43 10 } g x<=y
   043 {    22  2 } GTO 2
   044 {        2 } 2
   045 { 43  6  0 } g F? 0
   046 {       16 } CHS
   047 {    44  8 } STO 8
   048 {    43 16 } g ABS
   049 { 42 21  6 } f LBL 6
   050 {       30 } -
   051 {    44 25 } STO I
   052 {    44 .2 } STO 12
   053 { 42 21  0 } f LBL 0
   054 {    45 24 } RCL (i)
   055 { 42  6 25 } f ISG I
   056 { 42  7  4 } f FIX 4
   057 { 44 30 24 } STO - (i)
   058 {    45 .1 } RCL 11
   059 {    45 25 } RCL I
   060 { 43 30  6 } g TEST 6
   061 {    22  0 } GTO 0
   062 {    45 .2 } RCL 12
   063 {    44 25 } STO I
   064 {    43 20 } g x==0
   065 {    22  4 } GTO 4
   066 {        1 } 1
   067 {    22  6 } GTO 6
   068 { 42 21  4 } f LBL 4
   069 {    45 24 } RCL (i)
   070 {    45  8 } RCL 8
   071 {       10 } /
   072 { 44 40  9 } STO + 9
   073 {        2 } 2
   074 {       16 } CHS
   075 { 44 20  8 } STO * 8
   076 { 42  6 25 } f ISG I
   077 { 42  7  4 } f FIX 4
   078 {    45 .1 } RCL 11
   079 {    45 25 } RCL I
   080 {    43 10 } g x<=y
   081 {    22  4 } GTO 4
   082 {    45  9 } RCL 9
   083 {    43 32 } g RTN

This is subroutine B to calculate the elements of the sequence:
Code:
   084 { 42 21 12 } f LBL B
   085 {        1 } 1
   086 {       40 } +
   087 {    43 11 } g x^2
   088 {        4 } 4
   089 {       20 } *
   090 {        1 } 1
   091 {       30 } -
   092 {       15 } 1/x
   093 {    43 32 } g RTN

Example

10 ENTER 7
GSB A

0.285398164

.5 +
4 ×

3.141592654


It takes about 1'24" to return the result.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Yet another π formula - Gerson W. Barbosa - 01-04-2021, 08:41 PM
RE: Yet another π formula - Albert Chan - 01-05-2021, 10:50 PM
RE: Yet another π formula - Albert Chan - 01-06-2021, 01:32 AM
RE: Yet another π formula - Albert Chan - 01-07-2021, 09:56 PM
RE: Yet another π formula - Albert Chan - 11-25-2024, 10:01 PM
RE: Yet another π formula - Albert Chan - 11-26-2024, 01:32 AM
RE: Yet another π formula - toml_12953 - 01-06-2021, 02:10 AM
RE: Yet another π formula - ttw - 01-06-2021, 03:44 AM
RE: Yet another π formula - Albert Chan - 01-09-2021, 09:22 PM
RE: Yet another π formula - Albert Chan - 11-06-2021, 06:28 PM
RE: Yet another π formula - Thomas Klemm - 11-24-2024 01:59 PM
RE: Yet another π formula - Albert Chan - 11-25-2024, 01:47 PM
RE: Yet another π formula - Albert Chan - 11-26-2024, 01:28 PM
RE: Yet another π formula - Ren - 11-25-2024, 01:08 AM
RE: Yet another π formula - Thomas Klemm - 11-25-2024, 06:47 PM
RE: Yet another π formula - EdS2 - 11-26-2024, 02:09 PM
RE: Yet another π formula - Albert Chan - 11-26-2024, 05:57 PM
RE: Yet another π formula - AnnoyedOne - 11-26-2024, 02:19 PM
RE: Yet another π formula - C.Ret - 11-26-2024, 03:42 PM
RE: Yet another π formula - AnnoyedOne - 11-26-2024, 05:37 PM
RE: Yet another π formula - EdS2 - 11-27-2024, 09:14 AM



User(s) browsing this thread: 4 Guest(s)