Post Reply 
Question for Trig Gurus
12-02-2014, 01:49 AM
Post: #10
RE: Question for Trig Gurus
(12-02-2014 01:12 AM)Thomas Klemm Wrote:  
(12-02-2014 12:16 AM)Namir Wrote:  So for example what is f() and g() that define for example the arcsine as a function of the sine and a function of the angle:

arcsin(x) = f(sin(g(x)))

f(x)=arcsin(g-1(arcsin(x)))

But that's probably not what you are looking for. I assume that f and g should be "simple" functions that are available on this calculator or at least a simple combination of them. However I doubt that there are any.

You could try and set up f and g as power series and then try to figure out their coefficients. But the composition of functions is used twice. Good luck!

Cheers
Thomas

Thomas,

The calculator has no inverse trig functions. I am trying to see if there is a math trick to calculate the inverse trig functions using the trig functions (without using an iterative method like Newton's method).

What I am looking for is hard to find if it exists at all. I am looking for a math trick to do the job.

Namir
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Question for Trig Gurus - Namir - 12-01-2014, 07:49 PM
RE: Question for Trig Gurus - toml_12953 - 12-01-2014, 08:08 PM
RE: Question for Trig Gurus - PANAMATIK - 12-01-2014, 08:46 PM
RE: Question for Trig Gurus - Namir - 12-01-2014, 10:54 PM
RE: Question for Trig Gurus - toml_12953 - 12-02-2014, 02:30 AM
RE: Question for Trig Gurus - Namir - 12-02-2014, 09:21 AM
RE: Question for Trig Gurus - Namir - 12-02-2014, 04:57 PM
RE: Question for Trig Gurus - Albert Chan - 07-29-2022, 03:19 PM
RE: Question for Trig Gurus - Mark Hardman - 12-01-2014, 11:00 PM
RE: Question for Trig Gurus - Thomas Klemm - 12-02-2014, 12:09 AM
RE: Question for Trig Gurus - Namir - 12-02-2014, 12:16 AM
RE: Question for Trig Gurus - Thomas Klemm - 12-02-2014, 01:12 AM
RE: Question for Trig Gurus - Namir - 12-02-2014, 01:50 AM
RE: Question for Trig Gurus - Namir - 12-02-2014 01:49 AM
RE: Question for Trig Gurus - Namir - 12-05-2014, 02:48 AM
RE: Question for Trig Gurus - Namir - 12-09-2014, 02:19 PM
RE: Question for Trig Gurus - Thomas Klemm - 07-29-2022, 12:59 PM
RE: Question for Trig Gurus - ttw - 07-29-2022, 10:19 PM
RE: Question for Trig Gurus - Thomas Klemm - 07-30-2022, 08:26 AM
RE: Question for Trig Gurus - Albert Chan - 07-30-2022, 06:27 PM
RE: Question for Trig Gurus - Thomas Klemm - 07-30-2022, 09:38 AM
RE: Question for Trig Gurus - Thomas Klemm - 07-31-2022, 11:08 AM
RE: Question for Trig Gurus - Albert Chan - 07-31-2022, 09:54 PM
RE: Question for Trig Gurus - Thomas Klemm - 08-01-2022, 05:19 AM
RE: Question for Trig Gurus - Albert Chan - 08-01-2022, 02:36 PM
RE: Question for Trig Gurus - Thomas Klemm - 08-02-2022, 06:35 AM
RE: Question for Trig Gurus - Albert Chan - 08-02-2022, 05:28 PM
RE: Question for Trig Gurus - Thomas Klemm - 08-03-2022, 04:42 PM



User(s) browsing this thread: 3 Guest(s)