HP 11C real root finder [Newton Method]
|
01-12-2014, 01:26 PM
Post: #5
|
|||
|
|||
RE: HP 11C real root finder [Newton Method]
(01-12-2014 08:31 AM)Namir Wrote: ...h = 0.001*(ABS(X)+1) First of all, instead of multiplying with \(10^{-3}\), dividing by \(10^{3}\) is one step shorter. ;-) This method for determining h will work in most cases, but not for very small arguments. Consider \(x = 10^{-4}\) or even \(x = 10^{-40}\). That's why I prefer \(h = x/10^4\). On the 34s, the result can be easily rounded to 1 or 2 significant digits (RSD 1) to prevent slight roundoff errors. As usual, \(x=0\) is handled as \(x=1\). Dieter |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP 11C real root finder [Newton Method] - Carlos CM (Mexico) - 01-09-2014, 11:59 PM
RE: HP 11C real root finder [Newton Method] - Thomas Klemm - 01-10-2014, 12:57 AM
RE: HP 11C real root finder [Newton Method] - Carlos CM (Mexico) - 01-10-2014, 05:28 PM
RE: HP 11C real root finder [Newton Method] - Namir - 01-12-2014, 08:31 AM
RE: HP 11C real root finder [Newton Method] - Dieter - 01-12-2014 01:26 PM
RE: HP 11C real root finder [Newton Method] - Namir - 01-15-2014, 05:53 AM
RE: HP 11C real root finder [Newton Method] - Dieter - 01-15-2014, 08:38 PM
RE: HP 11C real root finder [Newton Method] - Thomas Klemm - 01-14-2014, 08:56 PM
|
User(s) browsing this thread: 3 Guest(s)