Post Reply 
(50g) Nth Fibonacci Number
02-26-2015, 10:45 PM
Post: #9
RE: (50g) Nth Fibonacci Number
This is the diagonalization of this matrix:

[Image: rcZtfSc.jpg]

When \(M\) is squared the inner product of \(S^{-1} \cdot S\) cancel:
\(M^2=(S \cdot J \cdot S^{-1})^2=S \cdot J \cdot S^{-1} \cdot S \cdot J \cdot S^{-1}=S \cdot J \cdot J \cdot S^{-1}=S \cdot J^2 \cdot S^{-1}\)
This can be generalized for all powers so that we end up with:
\(M^n=S \cdot J^n \cdot S^{-1}\)
But the power of a diagonalized matrix consists just of the power of its elements on the diagonal (i.e. the eigenvalues).
This brings us back to Eddie's initial solution. Okay, maybe after a little exercise in algebra.

Cheers
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (50g) Nth Fibonacci Number - Gerald H - 02-22-2015, 09:48 AM
RE: (50g) Nth Fibonacci Number - Joe Horn - 02-22-2015, 09:06 PM
RE: (50g) Nth Fibonacci Number - Offroad - 02-23-2015, 03:07 AM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-26-2015, 01:42 PM
RE: (50g) Nth Fibonacci Number - Han - 02-26-2015, 07:39 PM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-26-2015, 08:23 PM
RE: (50g) Nth Fibonacci Number - Joe Horn - 02-26-2015, 10:19 PM
RE: (50g) Nth Fibonacci Number - Thomas Klemm - 02-26-2015 10:45 PM
RE: (50g) Nth Fibonacci Number - Han - 02-27-2015, 03:29 AM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:31 PM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:43 PM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:48 PM
RE: (50g) Nth Fibonacci Number - Han - 02-27-2015, 02:22 PM
RE: (50g) Nth Fibonacci Number - Gerald H - 02-27-2015, 03:27 PM



User(s) browsing this thread: 2 Guest(s)