Post Reply 
(50g) Nth Fibonacci Number
02-27-2015, 05:10 AM
Post: #12
RE: (50g) Nth Fibonacci Number
(02-26-2015 01:42 PM)rprosperi Wrote:  So, can you explain that?

For \(x_{n+2}=x_n+x_{n+1}\) you can define a 2nd sequence \(y_n=x_{n+1}\).
Thus the relation becomes:

\(y_{n+1}=x_{n+2}=x_n+y_n\).

Now you combine both sequences into a vector:

\(z_n=\begin{bmatrix}
x_n \\
y_n
\end{bmatrix}\)

This allows to merge both equations into a single one:

\(z_{n+1}=\begin{bmatrix}
x_{n+1} \\
y_{n+1}
\end{bmatrix}=\begin{bmatrix}
y_n \\
x_n+y_n
\end{bmatrix}=\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}\cdot\begin{bmatrix}
x_n \\
y_n
\end{bmatrix}=M\cdot z_n\)

But this is just the recursive definition of a geometric sequence leading to:

\(z_n=M^n\cdot z_0\) with \(z_0=\begin{bmatrix}
1 \\
0
\end{bmatrix}\)

HTH
Thomas
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: (50g) Nth Fibonacci Number - Gerald H - 02-22-2015, 09:48 AM
RE: (50g) Nth Fibonacci Number - Joe Horn - 02-22-2015, 09:06 PM
RE: (50g) Nth Fibonacci Number - Offroad - 02-23-2015, 03:07 AM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-26-2015, 01:42 PM
RE: (50g) Nth Fibonacci Number - Han - 02-26-2015, 07:39 PM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-26-2015, 08:23 PM
RE: (50g) Nth Fibonacci Number - Joe Horn - 02-26-2015, 10:19 PM
RE: (50g) Nth Fibonacci Number - Han - 02-27-2015, 03:29 AM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:31 PM
RE: (50g) Nth Fibonacci Number - Thomas Klemm - 02-27-2015 05:10 AM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:43 PM
RE: (50g) Nth Fibonacci Number - rprosperi - 02-27-2015, 01:48 PM
RE: (50g) Nth Fibonacci Number - Han - 02-27-2015, 02:22 PM
RE: (50g) Nth Fibonacci Number - Gerald H - 02-27-2015, 03:27 PM



User(s) browsing this thread: 1 Guest(s)