Post Reply 
desolve y'=(x+y)^2
05-01-2015, 07:06 PM (This post was last modified: 05-01-2015 07:09 PM by Tugdual.)
Post: #6
RE: desolve y'=(x+y)^2
I didn't give up but couldn't conclude.
Tried Maxima, failed.
Tried Wolfram Alpha and it found something:
$$y(x)=\frac { 1 }{ { c }_{ 1 }.{ e }^{ 2.i.x }-\frac { i }{ 2 } } -x-i$$
I checked on the 50g and this seems good but I haven't been able to relate this with a tangent...
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
desolve y'=(x+y)^2 - salvomic - 05-01-2015, 02:45 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 04:11 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:14 PM
RE: desolve y'=(x+y)^2 - Arno K - 05-01-2015, 04:41 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 04:48 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015 07:06 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 07:16 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:56 PM
RE: desolve y'=(x+y)^2 - lrdheat - 05-01-2015, 07:57 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:06 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-01-2015, 08:26 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-01-2015, 08:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 05:30 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:00 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 09:34 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 10:50 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:36 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 12:43 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 12:49 PM
RE: desolve y'=(x+y)^2 - parisse - 05-02-2015, 06:15 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 07:32 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:07 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 04:45 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 04:59 PM
RE: desolve y'=(x+y)^2 - Tugdual - 05-02-2015, 05:21 PM
RE: desolve y'=(x+y)^2 - salvomic - 05-02-2015, 05:23 PM
RE: desolve y'=(x+y)^2 - parisse - 05-03-2015, 06:08 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-03-2015, 07:48 AM
RE: desolve y'=(x+y)^2 - parisse - 05-04-2015, 07:15 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-04-2015, 08:34 AM
RE: desolve y'=(x+y)^2 - salvomic - 05-11-2015, 09:30 PM



User(s) browsing this thread: 4 Guest(s)