(49G) Function of a Matrix
|
05-05-2015, 03:47 PM
(This post was last modified: 11-01-2017 11:22 AM by Gerald H.)
Post: #1
|
|||
|
|||
(49G) Function of a Matrix
MFUN applies a function to a square matrix, calculator should be in approx & complex modes. For example, to find the natural log of matrix
M1=[[ -9. 0. -1. -4. ] [ 4. 9. 3. 3. ] [ 0. 4. -9. 9. ] [ 5. -1. -6. -4. ]] place M1 on stack level Y & 'LN(X)' on stack level X. MFUN returns the complex matrix M2=[[ (2.17927367373,1.99350072846) (-.185449038469,-.25062812471) (.12978172209,1.13653167793) (-1.21072226166,-.24561453301) ] [ (-.349990278973,-.725022350755) (2.17006519946,9.11517059164E-2) (.316994726521,-.413348667032) (-8.29926914019E-3,8.93282974816E-2) ] [ (.499972969813,1.87320392796) (.360844076572,-.235504096367) (1.81399293871,1.06794824449) (2.26427803714,-.230793047339) ] [ (1.5738586231,8.93453089839E-2) (.311847366461,-1.12327258886E-2) (-1.58567642989,5.09374150115E-2) (2.97368489567,-.011008025242) ]] to stack level X. As a check, you could then put 'e^X' on the stack & actuate MFUN again, to return [[ (-8.99999999989,-1.62595437076E-10) (-7.789692811E-12,2.87950512152E-11) (-.999999999977,-1.80997814311E-10) (-3.99999999999,-1.76112719874E-11) ] [ (3.99999999998,4.21474277251E-11) (9.00000000017,7.44661562123E-11) (2.99999999996,3.96498859739E-11) (3.00000000004,1.34469661894E-12) ] [ (2.98413096713E-11,-1.53814112532E-10) (3.99999999998,4.04329178333E-11) (-8.99999999998,-1.19988781132E-10) (8.99999999994,1.82967287016E-10) ] [ (4.99999999998,6.94233268647E-11) (-1.00000000004,6.827569037E-12) (-5.99999999997,-5.4121217567E-11) (-4.00000000003,1.19154531002E-10) ]] where the imaginary parts are v small, so RE 0 RND looks more like the original M1. I am sure the programme has enormous inefficiencies & would welcome improvements. TI fans - the TI-92 does this out of the box, just use LN(M1). Code: :: |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(49G) Function of a Matrix - Gerald H - 05-05-2015 03:47 PM
RE: HP 49G: Function of a Matrix - Gerald H - 05-15-2015, 03:09 PM
RE: (49G) Function of a Matrix - Gilles59 - 10-31-2017, 05:16 PM
RE: (49G) Function of a Matrix - Gerald H - 10-31-2017, 10:04 PM
RE: (49G) Function of a Matrix - Gerald H - 10-31-2017, 10:15 PM
RE: (49G) Function of a Matrix - Gilles59 - 10-31-2017, 11:03 PM
RE: (49G) Function of a Matrix - Gerald H - 11-01-2017, 01:19 PM
RE: (49G) Function of a Matrix - pier4r - 11-01-2017, 06:06 PM
RE: (49G) Function of a Matrix - Gerald H - 11-01-2017, 06:27 PM
|
User(s) browsing this thread: 2 Guest(s)