Post Reply 
HP Prime lockup (not a complaint)
05-17-2015, 01:37 AM
Post: #16
RE: HP Prime lockup (not a complaint)
(05-16-2015 11:49 PM)Anders Wrote:  Yes, so trying my little trivial example of diff((z-i)^1/2,z) of again with the new firmware 7820 results in the correct:
(1/2)/√(z-1)
Great! this bug is fixed.

Now I could not resist but to press the simplify button again on (1/2)/√(z-1) and unfortunately this results in spinning hour glass (top right corner) and gives eventually physical prime:
√(IM(z)2+RE(z) 2-2*IM(z)+1) * √(√(z2 + 1*(-2-IM(z)2*RI….
and strangely on the in the virtual calculator a different result:
(z^2*√(z^3+√(z^2+1)*(z^2-2*z+2)-2*z^2+2*z-2)+z*√(z^2+1)*√(z^3+√(z^2+1)*(z^2-2*z+2)-2*z^2+2*z-2)-z*√(z^3+√(z^2+1)*(z^2-2*z+2)-2*z^2+2*z-2)+(-1-)*√(z^2+1)*√(z^3+√(z^2+1)*(z^2-2*z+2)-2*z^2+2*z-2)+(1+)*√(z^3+√(z^2+1)*(z^2-2*z+2)-2*z^2+2*z-2))/(2*z^4*√2+2*z^3*√2*√(z^2+1)+(-4-2*)*z^3*√2+(-4-2*)*z^2*√2*√(z^2+1)+(4+4*)*z^2*√2+(4+4*)*z*√2*√(z^2+1)+(-4-4*)*z*√2+(-4*)*√2*√(z^2+1)+(4*)*√2)

You must have "Complex" checked in the CAS Settings on your physical prime and unchecked on the emulator.

That still doesn't explain why simplify returns a much more "complex" result.

Ceci n'est pas une signature.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: HP Prime lockup (not a complaint) - Mark Hardman - 05-17-2015 01:37 AM



User(s) browsing this thread: 3 Guest(s)