A case against the x<>y key
|
05-18-2015, 10:06 PM
Post: #50
|
|||
|
|||
RE: A case against the x<>y key
You could use the calculation of cos(x) as a practical example:
\(\begin{align*} \cos(x) &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-\frac{x^{10}}{10!}+O(x^{12})\\ &= 1-\frac{x^2}{1\cdot2}(1-\frac{x^2}{3\cdot4}(1-\frac{x^2}{5\cdot6}(1-\frac{x^2}{7\cdot8}(1-\frac{x^2}{9\cdot10}))))+O(x^{12}) \end{align*}\) Using the x<>y key: x2 ENTER ENTER ENTER 90 ÷ 1 x<>y − × 56 ÷ 1 x<>y − × 30 ÷ 1 x<>y − × 12 ÷ 1 x<>y − × 2 ÷ 1 x<>y − Using the CHS key: x2 CHS ENTER ENTER ENTER 90 ÷ 1 + × 56 ÷ 1 + × 30 ÷ 1 + × 12 ÷ 1 + × 2 ÷ 1 + Kind regards Thomas |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 6 Guest(s)