(03-30-2016 01:32 AM)bshoring Wrote: Here's another program written by Willy Kunz, that offers a similar level of accuracy:
Trigonometric Functions for RPN-38 CX
by Willy Kunz
R.0: 5.8177641733144E-03
R.1: 0.199999779
R.2: 0.142841665
R.3: 1.107161127E-01
R.4: 0.086263068
R.5: 0.05051923
R8: 2.1E-26
R.8: 4.47569E-20
R.7: 5.55391606E-14
R.6: 3.281837614E-08
R6: 90
R7: 0.3333333333
Angles in DEGREES
-90 =< x <= 90
R/S --> cos(x)
x<>y --> sin(x)
x<>y / --> tan(x)
GTO 33 R/S --> asin(x)
GTO 42 R/S --> acos(x)
GTO 52 R/S --> atan(x)
01 - 21 73 9 STO .9
02 - 31 ENTER
03 - 61 ×
04 - 31 ENTER
05 - 31 ENTER
06 - 31 ENTER
07 - 22 61 8 RCL × 8
08 - 86 41 8 RCL − .8
09 - 61 ×
10 - 86 51 7 RCL + .7
11 - 61 ×
12 - 86 41 6 RCL − .6
13 - 61 ×
14 - 86 51 0 RCL + .0
15 - 86 61 9 RCL × .9
16 - 31 ENTER
17 - 31 ENTER
18 - 61 ×
19 - 4 4
20 - 61 ×
21 - 32 CHS
22 - 3 3
23 - 51 +
24 - 61 ×
25 - 31 ENTER
26 - 31 ENTER
27 - 61 ×
28 - 32 CHS
29 - 1 1
30 - 51 +
31 - 24 21 √x
32 - 25 7 00 GTO 00
33 - 25 6 x=0
34 - 25 7 00 GTO 00
35 - 31 ENTER
36 - 61 ×
37 - 24 71 1/x
38 - 1 1
39 - 41 −
40 - 24 71 1/x
41 - 25 7 49 GTO 49
42 - 25 6 x=0
43 - 25 7 98 GTO 98
44 - 31 ENTER
45 - 61 ×
46 - 24 71 1/x
47 - 1 1
48 - 41 −
49 - 24 21 √x
50 - 25 6 x=0
51 - 25 7 00 GTO 00
52 - 1 1
53 - 33 x≷y
54 - 25 5 x≤y
55 - 25 7 58 GTO 58
56 - 24 71 1/x
57 - 9 9
58 - 0 0
59 - 21 9 STO 9
60 - 25 33 R↓
61 - 24 71 1/x
62 - 21 73 9 STO .9
63 - 31 ENTER
64 - 61 ×
65 - 51 +
66 - 24 21 √x
67 - 86 41 9 RCL − .9
68 - 21 73 9 STO .9
69 - 31 ENTER
70 - 61 ×
71 - 31 ENTER
72 - 31 ENTER
73 - 31 ENTER
74 - 86 61 5 RCL × .5
75 - 86 41 4 RCL − .4
76 - 61 ×
77 - 86 51 3 RCL + .3
78 - 61 ×
79 - 86 41 2 RCL − .2
80 - 61 ×
81 - 86 51 1 RCL + .1
82 - 61 ×
83 - 22 41 7 RCL − 7
84 - 61 ×
85 - 1 1
86 - 51 +
87 - 86 61 9 RCL × .9
88 - 8 8
89 - 25 12 12÷
90 - 61 ×
91 - 86 71 0 RCL ÷ .0
92 - 22 9 RCL 9
93 - 25 6 x=0
94 - 33 x≷y
95 - 33 x≷y
96 - 41 −
97 - 25 7 00 GTO 00
98 - 22 6 RCL 6
99 - 25 7 00 GTO 00
Where have you found that one? It appears to be based upon my previous version, the one that borrows the sine polynomial constants from the 12C Platinum program. What are the results for cos(60), cos(89.9999) and tan(89.9999)?
I too did consider placing the 1/3 constant in a register, thus saving two steps, same for the 90 constant used for error handling, but I decided to refrain myself from using more common registers. The error handling solution I eventually came up with for the cases acos(0) and asin(1) uses one of the sine polynomial constants.
Anyway, I prefer my latest version with the recent modification to make sine show up first.
Regards,
Gerson.