The following warnings occurred:
Warning [2] count(): Parameter must be an array or an object that implements Countable - Line: 795 - File: showthread.php PHP 7.4.33 (FreeBSD)
File Line Function
/showthread.php 795 errorHandler->error





Post Reply 
PART function (TI89, HPPRIME) for HP48/49/50
06-08-2016, 01:40 AM (This post was last modified: 03-02-2018 01:39 PM by compsystems.)
Post: #1
PART function (TI89, HPPRIME) for HP48/49/50
sorry for my bad English

Hi I have managed create the same PART function (TI89, HPPRIME) for HP48/49/50 calculators, this function to extract each part of an expression, very useful to analyze the algebraic expression,

PART function SOURCE CODE: used as main function obj->

PHP Code:
« 0 0 { } -> EXPRESSION XPART NPARTS OPERATOR OBJECTS
  « EXPRESSION
    IFERR OBJ
->
    
THEN ->STR 'OPERATOR' STO 0 'NPARTS' STO OPERATOR 1 ->LIST 'OBJECTS' STO
    
ELSE ->STR 'OPERATOR' STO 'NPARTS' STO NPARTS ->LIST 'OBJECTS' STO NPARTS OPERATOR OBJECTS 3 ->LIST DROP
    END
      
IF XPART NPARTS <= XPART ->= AND NOT
      THEN 
"EXPRESSION " EXPRESSION " CONTAINS ONLY " NPARTS " PARTS" +
      ELSE
        IF 
XPART 0 ==
        
THEN OPERATOR
        
ELSE
          IF 
XPART -==
          
THEN NPARTS
          
ELSE OBJECTS XPART GET
          END
        END
      END
  »
»
'PART' STO 



Syntax:
part(Expr, Integer)

Returns the nth sub expression of an expression. If the second argument is empty (-1 for hp48/49/50), returns the number of parts.
If the second argument is ZERO, returns the operator if any, otherwise returns the same expression as string


Examples:
TI89/TIVOYAGE200PLT AND HPPRIME

part(sin(x)+cos(y)) → 2 // two parts sin(x) & cos(y)
part(sin(x)+cos(y),1) → sin(x) // first part
part(sin(x)+cos(y),2) → cos(y) // second part
part(sin(x)+cos(y),3) → "nonexistent part in the expression"
part(sin(x)+cos(y),0) → "+" // operator between parts

part( part(sin(x)+cos(y),1)) → 1 // number of parts of the first part
part( part(sin(x)+cos(y),2)) → 1 // number of parts of the second part

part( part(sin(x)+cos(y),1),1) → x // firts part of the firts part, sin(x)→ x
part( part(sin(x)+cos(y),2),1) → y // firts part of the second part, cos(y)→ y

part( part(sin(x)+cos(y),1),0) → "sin" // operator of the firts part, sin(x)→ "sin"
part( part(sin(x)+cos(y),2),0) → "cos" // operator of the second part, cos(x)→ "cos"


part(sin(x)) → 1 // one part
part(sin(x),1) → x // first part
part(sin(x),0) → "sin" // operator "sin"

part(part(exp(x)*sin(x) + cos(x),1),2) → sin(x) // second part of the first part exp(x)*sin(x) → sin(x)
part(part(exp(x)*sin(x) + cos(x),1),0) → "*" // operator of the first part exp(x)*sin(x) → "*"
part(part(exp(x)*sin(x) + cos(x),2),0) → "cos" // operator of the second part cos(x)→ "cos"
part(part(exp(x)*sin(x) + cos(x),2),1) → "x"
part(part(exp(x)*sin(x) + cos(x),1)) → 2
part(part(exp(x)*sin(x) + cos(x),1),1) → exp(x)
part(part(part(e^x*sin(x) + cos(x),1),1),1) → x
part(part(part(e^x*sin(x) + cos(x),1),1),0) → "exp"

special cases

part(-X) → 1 // one parts
part(-X,1) → 1 // firts part, X
part(-X,0) → 1 // operator "-"

part(X1) → 0 // No parts
part(X1,0) → "X1"

part(-1) → 0 // No parts
part(-X,0) → 1 // "-1"
--------------

hp48/49/50 SERIES

'sin(x)+cos(x))' -1 → 2 // 2 parts
'sin(x)+cos(x)' 0 → "+" // operator
'sin(x)+cos(x)' 1 → 'sin(x)' // part1
'sin(x)+cos(x)' 2 → 'cos(x)' // part2
'sin(x)+cos(x)' 3 → "nonexistent part in the expression"


application of the PART function

TI89 Code


PHP Code:
difstep(f,x)
Func
  
//f(x),x
  
Local op
  
//diff(x,x)
  
If getType(f)="VAR"
    
Return when(f=x,1,0,0)
  
part(f,0)->op
  
//diff(k,x)
  
If part(f)=0
    
Return 0
  
//diff(­f,x)
  
If op="­"
    
Return ­1*difstep(part(f,1),x)
  
//diff(x^n,x)
  
If op="^"
    
Return part(f,2)*part(f,1)^(part(f,2)-1)
  
//diff(v(x),x)
  
If op="sqroot"
    
Return 1/(2*sqroo(part(f,1)))
  
//diff(f+g,x)
  
If op="+"
    
Return difstep(part(f,1),x)+difstep(part(f,2),x)
  
//diff(f-g,x)
  
If op="-"
    
Return difstep(part(f,1),x)-difstep(part(f,2),x)
  
//diff(f*g,x)
  
If op="*"
    
Return part(f,1)*difstep(part(f,2),x)+part(f,2)*difstep(part(f,1),x)
  
//diff(f/g,x)
  
If op="/"
    
Return (part(f,2)*difstep(part(f,1),x)-part(f,1)*difstep(part(f,2),x))/part(f,2)^2
...
  Return 
undef
EndFunc 

hpprime example


One way to make a Derivative is through tables rather by a selection of cases, analyzing the parts of the expression



PHP Code:
// version 0.2 Jun 6 2016 by COMPSYSTEMS COPYLEFT inv(©)
#cas
diff_table(xpr,var):=
BEGIN
    LOCAL nparts
operatorpart1part2;
    
LOCAL xprSameVar;
    
//purge(var);
    //print("");
    //CASE 1: if the expression is a variable name or identifier
    
if (type(xpr)==DOM_IDENTthen
        
// CASE 2: if the expression is equal to the variable, example diff(x,x)=1, otherwise diff(x,y)=0
        
return when(xpr==var,1,0);
    
end;
    
// number of parts of the expression
    
nparts:=part(xpr);
    
//operator
    
operator:=part(xpr,0);
    
//CASE 3: diff(k,v)=0
    //print(nparts); print(operator); wait;
    
if (nparts==0then
        
return 0// xpr=pi, i, numbers
    
end;
    if (
nparts>1then
        part1
:=part(xpr,1);
        
part2:=part(xpr,2);
        
//print(part1);print(part2);wait;
        
else
        
part1:=part(xpr,1);
        
//print(part1); wait;
    
end;
    
    
xprSameVar:= (string(part1)==string(var));
    
    
//CASE 4: diff(-f(v),v)=0 // NEG(xpr)
    
if (operator=="-"then
        
return -1*diff_table(part1,var);
    
end;
    
//CASE 5: diff(k*f(v),v)=0 // NEG(xpr)
    
if (operator="*" and type(part1)==DOM_INTthen
        
return part1*diff_table(part2,var);
    
end;
    
//CASE 6: diff(|f(v)|,v) with f(v)=v
    
if (operator=="abs" and xprSameVarthen
        
return sign(var); // assuming a function from R -> R
        //return var/abs(var); // Alternate Form
    
end;
    
//CASE 7: diff(|f(v)|,v)
    
if (operator=="abs" and !(xprSameVar)) then
        
return sign(var)*diff_table(part1,var);
    
end;
    
//         //CASE 8: diff(√(f(v)),v)
    //         if operator=="√" and xprSameVar then
    //             return 1/(2*√(var));
    //         end;
    //         //CASE 9: diff(√(v),v)
    //         if operator=="√" and !(xprSameVar) then
    //             return diff_table(part1,var)/(2*√(var));
    //         end;
    
    //CASE 8: diff(ln(v),v)
    
if (operator=="ln" and xprSameVarthen
        
return 1/var;
    
end;
    
//CASE 9: diff(ln(f(v)),v)
    
if (operator=="ln" and !(xprSameVar)) then
        
return diff_table(part1,var)/part1;
    
end;
    
//fun.trig
    //CASE 10: diff(sin(v),v)
    
if (operator="sin" and xprSameVarthen
        
return cos(var);
    
end;
    
//CASE 11: diff(sin(f(v)),v)
    
if (operator="sin" and !(xprSameVar)) then
        
return cos(part1)*diff_table(p1,var);
    
end;
    
//CASE 12: diff(cos(v),v)
    
if (operator="cos" and xprSameVarthen
        
return ­sin(var);
    
end;
    
//CASE 13: diff(cos(f(v)),v)
    
if (operator="cos" and !(xprSameVar)) then
        
return ­sin(part1)*diff_table(part1,var);
    
end;
    
//CASE 14: diff(tan(v),v)
    
if (operator="tan" and xprSameVarthen
        
return sec(var)^// alternate form (1/cos(x))^2
    
end;
    
//CASE 15: diff(tan(f(v)),v)
    
if (operator="tan" and !(xprSameVar)) then
        
return sec(part1)^2*diff_table(part1,var);
    
end;
    
//CASE 16: diff(sin^-1(v),v)
    
if (operator=="asin" and xprSameVarthen
        
return 1/(1-var^2);
    
end;
    
//CASE 17: diff(sin^-1(f(v)),v)
    
if (operator=="asin" and !(xprSameVar)) then
        
return diff_table(part1,var)/(1-part1^2);
    
end;
    
//CASE 18: diff(cos^-1(v),v)
    
if (operator=="acos" and xprSameVarthen
        
return ­1/(1-var^2);
    
end;
    
//CASE 19: diff(cos^-1(f(v)),v)
    // acos(-x) -> ((π+2*asin(x))/2)
    //     if (operator=="acos" and !(xprSameVar)) then
    //         return -1*diff_table(part1,var)/√(1-part1^2);
    //     end;
    //CASE 20: diff(atan^-1(v),v)
    
if (operator=="atan" and xprSameVarthen
        
return 1/(1+var^2);
    
end;
    
//CASE 21: diff(atan^-1(f(v)),v)
    
if (operator=="atan" and !(xprSameVar)) then
        
return diff_table(part1,var)/(1+part1^2);
    
end;
    
    
//CASE  : diff(f+g,v)
    
if operator="+" then
        
return deriv(part1,var)+deriv(part2,var);
    
end;
    
    
// codifying
    // ...
    
return Done;
END;
#end 


Examples

CASE 1:
diff_table(x,x) -> 1

CASE 2:
diff_table(x,y) -> 0
diff_table(y,x) -> 0

CASE 3:
diff_table(i,x) -> 0
diff_table(√(-1),x) -> 0
diff_table(5,x) -> 0
diff_table(PI,x) -> 0
diff_table(-1,x) -> 0

CASE 4:
diff_table(-x,x) -> -1

CASE 5:
diff_table(-3*x,x) -> -3
diff_table(3*x,x) -> 3
diff_table(+3*x,x) -> 3

CASE 6:
diff_table(abs(x),x) -> sign(x)

CASE 7:
diff_table(abs(-x),x) -> sign(x)

CASE 8:
diff_table(ln(x),x) -> 1/x

CASE 9:
diff_table(ln(-x),x) -> 1/x

CASE 10:
diff_table(sin(x),x) -> cos(x)

CASE 11:
diff_table(sin(-x),x) -> -cos(x)

CASE 12:
diff_table(cos(x),x)­ -> ­-sin(x)

CASE 13:
diff_table(cos(x),x)­ -> ­-sin(x)

CASE 14:
diff_table(tan(x),x)-> (1/cos(x))^2 = sec(x)^2

CASE 15:
diff_table(tan(-x),x)-> -(1/cos(x))^2 = -sec(x)^2

CASE 16:
diff_table(asin(x),x) -> 1/√(1-x^2)

CASE 17:
diff_table(asin(x),x) -> -1/√(1-x^2)

CASE 18:
diff_table(acos(x),x) -> -­1/√(1-x^2)



CASE 20:
diff_table(atan(x),x) -> 1/(1+x^2)

CASE 21:
diff_table(atan(-x),x) -> -1/(1+x^2)

CASE ...:
writing ...
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
PART function (TI89, HPPRIME) for HP48/49/50 - compsystems - 06-08-2016 01:40 AM



User(s) browsing this thread: 1 Guest(s)