Post Reply 
Short & Sweet Math Challenge #21: Powers that be
11-02-2016, 10:22 PM
Post: #8
RE: Short & Sweet Math Challenge #21: Powers that be
 
Hi, Jean-François !:

Thanks a lot for your kind comment and continued interest in my posts, much appreciated.

(11-02-2016 01:48 PM)J-F Garnier Wrote:  One question:
From the output examples here:
(11-02-2016 01:13 AM)Valentin Albillo Wrote:  
1.57367896839 x^8-x^7-x^6+x^2-1
1.59000537390 x^7-x^5-x^4-x^3-x^2-x-1
1.60134733379 x^7-x^6-x^4-x^2-1
it seems that null polynomial coefficients are allowed, not only +1 or -1,
Is it correct?

Yes, of course, my bad, thanks for pointing it out to me, I've already corrected it in my original post.

I was going to write that the absolute value of the integer coefficients had to be up to and including 1 but decided instead to just enumerate them and the '0' was simply left out.

Thanks and here's hoping for your own solution to this challenge, it would be an amazing way to start the "second season" ! ... 8-D

Best regards.
V.
 

  
All My Articles & other Materials here:  Valentin Albillo's HP Collection
 
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: Short & Sweet Math Challenge #21: Powers that be - Valentin Albillo - 11-02-2016 10:22 PM



User(s) browsing this thread: 1 Guest(s)